[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2ch.scのread.cgiへ]
Update time : 04/23 07:31 / Filesize : 322 KB / Number-of Response : 801
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

【オセロ,将棋】ボードゲーム【囲碁,War】



1 名前:名前は開発中のものです。 [03/07/10 00:10 ID:6FQp6G+O.net]
比較的地味なボードゲーム専用のスレが欲しくて立ててみました。

私はc言語で作ったデータベースを使って人間と対戦できる将棋かチェス
みたいなソフトを作りたいと思ってますが、グラフィックインターフェースの
作り方がわからなくてつっかえているレベルです。

761 名前:535 mailto:sage [2017/03/21(火) 22:23:02.18 ID:xGpFrIPp.net]
特徴量と棋譜は用意できる。
棋譜の勝者の着手に対してどの特徴量が優先的に選択されたか?を計算したい。
どうすればいいかな?

762 名前:名前は開発中のものです。 mailto:sage [2017/03/22(水) 00:39:02.37 ID:/GDSNvuJ.net]
優先的とか無いでしょ
評価関数は全ての特徴量に対応する評価点を合計するだけ
その各評価点の絶対値が大きくて評価値に割と大きな影響を与えるとかゼロに近いとかはあるけど

763 名前:310 mailto:sage [2017/03/22(水) 09:25:05.89 ID:sNSr7O3Z.net]
>>761
それを統計的に処理して求めるのが線形回帰。
収束アルゴリズムは最急降下法を使用するのが普通。

特徴量あり1、無し0で特徴量並べたベクトルを食わせて、
荷重値であるウェイトを同数用意して内積計算。
出て来たスカラ値が、教師データに合うようにウェイトを収束計算させる。

出て来たウェイトが対応する各特徴量の重要度を表す。

764 名前:535 mailto:sage [2017/03/22(水) 20:48:28.79 ID:rRrXmS1r.net]
自力で線形回帰を実装するのはしんどそう。
なにかいいライブラリないですか?
>>535のMM法が動いてくれれば話は早かったのになぁ

765 名前:535 mailto:sage [2017/03/22(水) 21:25:31.00 ID:rRrXmS1r.net]
もう一度MM法トライしてみるか…

766 名前:310 mailto:sage [2017/03/23(木) 17:35:49.51 ID:xjqriUpX.net]
線形回帰というか、最急降下法自体はたいした事ないよ。
ひたすらループ回して、答えを出して、教師データとの差に比例して
ウェイトを調整するだけ。ニューラルネットになるとバックプロパゲーション
が出てくる(これも似たようなものだけど)違いがあるけど。

とりあえず実装の参考にするならこれ。
sealsoft.jp/thell/learning.pdf

GitHUBとかで探すとなんかあるかも。裏ワザではMLPのライブラリ落として
来て、1層の活性化関数無しの全結合層で計算させるって手もある。

767 名前:310 mailto:sage [2017/03/23(木) 17:40:46.97 ID:xjqriUpX.net]
こちらは、線形回帰の評価関数を作り直して、勝率と石差の2つ用意して、
アルファ碁っぽくMCTSに組み込んでみました。

で、テスト開始したらやたらと落ちる。
線形回帰の計算にEigen(行列パッケージ)を使用していたんだけど、こいつ
が並列処理に対応していないのが原因臭い。

というわけで、学習部分と、MCTSで使う評価関数を切り分けて、評価値を
求める時はEigenを使わないように改造中です。

果たして強くなっているのか。

768 名前:535 mailto:sage [2017/03/23(木) 20:11:41.72 ID:rddo+SDA.net]
>>766
ありがとうございます。
さらっと読んでみました。
いい感じの文章ですね。
なんとなくイメージは掴めましたが、実際実装するのは結構大変そうな気がします。
まずはMM法でやり直してみて、駄目だったら手を出してみます。
すいません。

769 名前:310 mailto:sage [2017/03/25(土) 10:29:51.08 ID:8t9unId8.net]
学習時と使用時の評価関数の切り分け。簡単にやるつもりだったのに、
バグ一杯出してデバッグで大変な事に。

デバッグが行き詰ると、気になっていた箇所を綺麗に直して手を動かし
続けたくなるんだけど、つい計算結果に影響が出てしまうところまで
手を入れてしまい、結局また再度学習しなおしです。

一応バグは解消したと思っていますが・・・
この土日に確認まで行けるか微妙。



770 名前:名前は開発中のものです。 [2017/03/25(土) 15:51:24.00 ID:eEMcRod/.net]
自作アナログゲームを投稿・共有できる「紙ゲー.net」がオープン
www.moguragames.com/entry/kamigame-analog-game/

771 名前:535 mailto:sage [2017/03/25(土) 21:50:08.29 ID:S05KfsXi.net]
特徴量、用意できるって言ったけど、いざ作ろうとすると迷うw
あれもほしい、これもほしいとなって発散してしまう。

772 名前:310 mailto:sage [2017/03/25(土) 23:15:01.53 ID:8t9unId8.net]
特徴量の選択はね・・・

実際にその特徴量を使って統計処理(線形回帰でもMLPでもDCNNでも何でも可)して
みて、結果の精度に効くものを残して、効かないもの(ウェイトがゼロになるとか、外して
も精度が変わらないとか)を外して、結果的に決まるものじゃないかと思います。

そういう意味じゃ、仮説検証でトライアンドエラーしないといかん。

オセロではBuroさんが論文書いてくれているので、皆それをベースに小修正程度で、
ほぼ同じ精度のものができちゃいますが、そういう先行者がいないゲームだと、自分で
やらないといけないので大変だと思います。

DCNNで「特徴量を自動的に決めてくれる」ってのに、皆が胸熱になったのは、そういう
事です。自分はオセロに応用しようとして、失敗して、後回しにしちゃいましたが。

773 名前:310 mailto:sage [2017/03/27(月) 01:55:55.89 ID:n7C1rJ6D.net]
アルファチックなMCTSオセロですが、とりあえず途中まで学習してテストしたところ・・・。

終局しているのに両者パスでツリーが伸びて行ってしまう(汗
何度チェックしても原因不明。ブレークポイントでチェックすると、あり得ない場所で
ボードデータが書き換わっているように見えますが…。並列探索が原因かと思い、
シングル動作にしてみましたが、それでも同じ。かなり重症です。

が、それを除くと、途中までテストした感じでは、最善手を打てている模様。
まだ序盤なのにツリー成長が尋常ではなく、終局までツリーができています。
不要な手をカットする仕組みとして、十分すぎる性能になっています。
とはいえ、勝率判定はそれほど正確ではないので、変な局面に誘導されると、
読み抜けが問題になってくるかも知れません。

もしかしたら、終局後もパスでツリーが伸びている問題は、これまでもあったけど、
終盤完全読みにしていて見えなかっただけかも知れません。

774 名前:310 mailto:sage [2017/03/28(火) 03:12:19.93 ID:Cq+qEzvW.net]
パスが伸びる原因は判明。

着手後の盤面を返す関数で、合法手じゃない着手を要求された時を
エラーにせず、元の盤面をそのまま返していたため、手が進まなくなって
いたのが原因だった。

が、そもそも合法手以外の手を渡すはずがないから、エラートラップして
いなかっただけで・・・

まだ根本原因にはたどり着けず。

775 名前:535 mailto:sage [2017/03/29(水) 21:27:24.43 ID:a7v8cJOT.net]
MM法動きました!
でも全然強くないw
特徴量が悪いのか棋譜が足りないのか…

776 名前:310 mailto:sage [2017/03/29(水) 21:53:37.26 ID:4lOT7Sa+.net]
大体バグがとれました。

Zebraの学習モードと対局。
F5-D6から10手目までは定石使用。その後40手目まで新AIで手を分析。
途中数回-2の手を打つものの、そのまま終盤まで行き、−4〜−6くらいで安定。
40手前に負け趨勢が判明(勝率30%くらいかな?)するとご乱心モード入り(汗

というわけで、Zebraレベルまで、もう少しという感じです。

評価関数を使用したプレイアウトは、重すぎる上に結果も散々で、結局のところ
以前の角評価付相手着手可能数ヒューリスティックで3手を選択し、75%20%
5%で振り分けるものを使用しています。評価関数型の方は多分softmaxで
使うexpの計算が重いと思うので、テーブル化を検討してみようかと思います。

一番の改善点は・・・。評価関数で悪いと評価された手には、プレイアウトを割り当て
ないので、とにかくツリー展開が縦深します。30秒思考で12〜14手目には、一番
読んでいる枝は終局に達しています。これで、モンテカルロの偶然がかなり減って
いる印象です。また、余計な横枝が伸びていないので、メモリーにも優しいです。

2手ほど間違えるのは、ツリー展開の初期値で与える評価値の誤差が原因と思います。
ここは、今の評価関数では、これ以上精度出せないので、何か手を考える必要あり。

あと、いくつかの定数調整かな。

777 名前:310 mailto:sage [2017/03/31(金) 20:13:06.62 ID:Hurb1/nC.net]
expの計算は重さの原因ではありませんでした。やはり単純に評価関数が重い模様。
プレイアウトはヒューリスティックのsoftmax版に変更。

ツリーの初期の評価値は、数手読む事で精度アップを図ってみましたが、3手も読む
とかなり時間がかかって、プレイアウト回数が1/10以下になってしまうので、バランス
見て2手読みにしてみましたが、これで強さが変わるのか不明。

10〜15手目で1回。35手前後で1回づつ間違えて、負けを確信したところで乱心。
試しに15手まで定石DBを使うようにしてみたところ、35手目まで引き分けで行けました。
やはり35手目で間違えて−6。むむむ。

40手までの棋譜。
F5 D6 C3 D3 C4 F4 C5 B5 B4 B3
E7 C6 B6 E6 F6 D7 C8 A6 C7 E3
F3 G4 G3 E2 H3 G5 G6 F7 E8 B7
F2 B8 D1 F1 A8 A7 A5 D8 A4 A3

35手目のA8以下を、A5 A4 E1 C1 A8 A7としていれば引分でした。
評価の順番はA8/E1/A5と、正解を3番手に予想しています。
Zebraの中盤20手読みでもE1と間違える局面で24手読みだと正解するみたいです。

実をいうと、途中で邪魔が入って放置している間に、バックグラウンド探索で1000万
プレイアウトの上限に2回達しています。強さ図る時はバックグラウンド探索を止めない
と意味ないかも。

囲碁AIの本を読んでいたら、プレイアウトの精度の検証に、プレイアウト結果盤面を
統計的に処理して、終局予想図を出す方法と、重要な手を見つけるクリティカリティと
言う概念の説明がありました。この辺使って、プレイアウトの弱点探してみます。

778 名前:310 mailto:sage [2017/04/01(土) 01:30:30.93 ID:Wq4mpDtN.net]
直すところが無くなってきたのでパラメータ調整。
たまたまだと思いますが、初めてZebraの中盤24手読みと引き分けました。

こちらの設定は、バックグラウンド探索無しの1手1分(相手も30秒考えるという想定)
定石10手まで。完全読み切りルーチンなし。

F5 D6 C3 D3 C4 F4 C5 B5 B4 B3
D7 C6 B6 E6 F6 G5 G6 E3 A5 E7
F3 G4 E2 C2 H4 H3 H6 H5 C7 D8
G3 H7 A3 A4 A6 H2 F8 F7 C1 D2
C8 E8 F2 D1 F1 B1 E1 G1 B2 A1
A2 B8 A8 B7 A7 G2 H1 H8 G7 G8

ちなみにZebra側は全てBookにあった模様で、一度も中盤探索していません。

779 名前:535 mailto:sage [2017/04/01(土) 11:28:54.33 ID:Gu8vVrdS.net]
おおーZebra越えが見えてきましたか凄い!
こっちも頑張らねば…



780 名前:310 mailto:sage [2017/04/01(土) 12:57:37.15 ID:Wq4mpDtN.net]
あ、たまたま4月1日の投稿ですが、嘘ではありませぬ(^^;
Zebraがエイプリルフールしてくれたのかも知れませんが。

今回はZebra側は、全部Book上で打っていたので、思考時間実質ゼロです。
Bookを変化させるにして、最初にZebra側がBook評価で-0.5くらいの手を選んで
くれたので、緩まずに終盤まで行ったのかも知れません。

でも、流石に思考時間1分はやり過ぎですよね。
あと、Zebraの中盤探索と勝負したいのですから、ZebraもBookを切った方が良いかな。

781 名前:310 mailto:sage [2017/04/01(土) 14:20:36.16 ID:Wq4mpDtN.net]
ZebraをBook無しにして対戦したら、中盤で読み勝って+2勝ちになりました。

以下棋譜。
F5 D6 C3 D3 C4 F4 C5 B3 C2 E3
D2 C6 B4 B5 F2 E6 F3 C1 A3 A4
A5 A6 A7 D1 B6 E2 E7 D7 F1 E1
A2 G1 F7 G5 G4 G6 F6 H3 E8 C8
D8 G3 B8 B7 H5 H7 G2 H1 H6 G8
B1 A1 A8 C7 G7 H4 B2 H8 H2 F8

Zebra設定:白番、中盤24手探索、Book未使用、中盤変化せず
当方設定:黒番、10手目まで引分定石使用、思考時間1分、バックグラウンド探索なし
注)昨夜評価関数の学習を少し進めました。多分誤差範囲です。

Zebraの解析によれば23手目あたりで間違えてくれたみたいです。

こちらは10手までは定石使っておかないと、かなり滅茶苦茶な手を打ってしまったり
しますので、Zebraの序盤の精度は凄いですね。

次はどうしよう。
強化学習を調べているんだけど、いまいちどう応用したら良いのかがわからない。

782 名前:310 mailto:sage [2017/04/01(土) 16:16:54.26 ID:Wq4mpDtN.net]
1分探索では申し訳ないので、10秒探索+バックグラウンド探索にしてみました。

F5 D6 C4 D3 C3 F4 C5 B3 C2 E3
D2 C6 B4 B5 F2 E6 F3 C1 A3 A4
A5 A6 A7 D1 B6 E2 F1 E1 A2 G1
E7 D7 F7 G5 G4 G6 F6 H3 E8 C8
D8 G3 B8 B7 H5 H7 G2 H1 H6 G8
B1 A1 A8 C7 G7 H4 B2 H8 H2 F8

若干違うけど、ほとんど同じような進行で+2勝ち。
確認していないけど、手順前後で同じ終局図になっている気がする。

ちなみに23手目A7は、自分の手番でした。解析結果も、Zebra側が見落とした手
を発見している形になっています。恐らく、その手前の22手目のA6辺りで見落とし
が起きているのだと思います。

こちらが間違えていないという点は評価できるけど、Zebraを中盤変化させて色々な
パターンを試す必要ありそう。

まだ半信半疑だけど、10秒探索でこれって、ものすごく強くなってる気がしてきた。

783 名前:310 mailto:sage [2017/04/01(土) 17:37:16.14 ID:Wq4mpDtN.net]
もう1局やって引分。

強化学習って、プレイアウト同士対局させながら、確率的勾配効果法で
1件づつ更新を繰り返す形で良いのかなぁ。

784 名前:310 mailto:sage [2017/04/02(日) 18:48:15.03 ID:xuvwd7i8.net]
別のオープニングを試したところ、F5F6系や、F5D6C4G5系はZebraに勝てません。

試しにF5D6C4G5系を調べてみたところ、ツリー展開がなかなか深まらない様子で、
有望と評価される分岐が多すぎるのかと思います。最後はやけになって、1分読み
+要所でバックグラウンド放置探索で無理やりツリーを伸ばしたところ、途中経過で
Zebra評価値が−4まで行ったところから何と+4まで回復しました。

やはりポイントはツリーの深さであり、余計な枝を探索しない、ポリシーネットの精度
が重要になると。多分。


あと、相手パスの時にもおかしくなるバグを発見。今夜は、ここを調査。

785 名前:310 mailto:sage [2017/04/03(月) 20:36:38.16 ID:BqB2rFYT.net]
パスがおかしくなる奴は、やはりデバッグルーチン限定で、かつ直すと本処理にも
大きな修正が必要になるので、当該デバッグ処理を削除して対処。

F5D6C4G5系をテストプレイしていてわかったのは、中盤ことごとく読みがZebraと
一致しない事。一致しないだけなら良いけど、そこがところどころ悪手になってるっぽい。
読みが一致しないと、事前に読んでいない枝で探索する事になり、浅い探索のまま
間違いが連鎖する感じ。Zebraの着手は、こちらAIが予想は評価値順で3番目以降に
なっている。

これ、ロールポリシーが決めるプレイアウト割り当ての優先順位の問題か、それとも
プレイアウトの精度の問題か、はっきりしませんが、要するに評価値が間違っている
=弱いという事ですね。

で、この2点について、もう1ステップ先に進んでみようかと思います。

プレイアウトについては、強化学習で良いヒューリスティックを作れないか検討。
ロールポリシーについては、与えている棋譜のバラつきが原因かも知れないので、
強化学習の棋譜から自動生成する事を検討。

あと、終盤40手以降はほぼ間違えないので、Solverを削除してしまいました。
また、できれば、最終的には定石も無しにしたくなって来ました。
目指せピュアMCTS。

786 名前:310 mailto:sage [2017/04/03(月) 20:41:47.20 ID:BqB2rFYT.net]
忘れていた。

>>782の22手目は、Zebraの当初予想はG4でしたが、このターンに達した時に、
A6に変わりました。そこでここで強制的にG4を打たせて続行してみましたが、
+4でこちらのAIが勝利しました。Zebraが間違えたのは、もう少し前の場所の
可能性があります。

787 名前:310 mailto:sage [2017/04/05(水) 01:14:25.59 ID:4SaLkpgr.net]
>>786
Zebraが間違えたのは14手目のB5だった模様。ここで引き分け手順から外れてます。

定石無しにしようと書いておきながら、少なくとも引分とわかっている盤面情報を活用
して、探索の省略ができないかと、あちこちに組み込んでみましたが、効果は不明。

効果がわからないというより、毎晩こつこつと評価関数のエポック数を稼いでいたところ、
どうも過学習に近い状況に陥っているみたいで、手の選択が変わってきて、むしろ、
どんどん弱くなりつつあります。むむむ。

一旦変な手を選んでしまうと、Zebraにしっぺ返しを食らって、せっかく読み貯めた
プレイアウトの大半がボツになり、短いツリーで手を選択するうちに、どんどん
間違った手を打っていく模様。結果的に勝った時は、ツリーがどんどん伸びて行く
のと対照的です。

で、結局、評価関数の良し悪しという話に逆戻りorz
評価関数から脱却するためにMCTS始めた頃が懐かしい・・・

788 名前:535 mailto:sage [2017/04/05(水) 23:08:13.71 ID:laANBz/U.net]
最新の対戦結果です。
LV2に白番で勝ち越したようです。
しかし、LV1に黒番で負け越している。
あとLV1とLV3で白番のほうが勝率がいいのが謎。
真面目に長連対策してないのが弱点になっているのだろうか?
それにしてもLV3強すぎる。
LV1との対戦も100戦やる予定でしたが途中で固まってしまったようです。

100局目
黒(airandom.dll)の勝利回数: 2
白(ai-lv3.dll)の勝利回数: 98

100局目
黒(ai-lv3.dll)の勝利回数: 92
白(airandom.dll)の勝利回数: 8

100局目
黒(airandom.dll)の勝利回数: 77
白(ai-lv2.dll)の勝利回数: 23

100局目
黒(ai-lv2.dll)の勝利回数: 45
白(airandom.dll)の勝利回数: 55

86局目
黒(airandom.dll)の勝利回数: 41
白(ai-lv1.dll)の勝利回数: 45

83局目
黒(ai-lv1.dll)の勝利回数: 7
白(airandom.dll)の勝利回数: 76

789 名前:名前は開発中のものです。 mailto:sage [2017/04/08(土) 13:24:07.33 ID:mnzcHtDh.net]
2003年に立てられたスレが最近になって動いてる…w
がんばってくださいな。



790 名前:310 mailto:sage [2017/04/08(土) 17:26:32.31 ID:cxbXAKoL.net]
色々グチャグチャと改良(改悪)してましたが、一旦整理して、結局かなりシンプルな
形に落ち着きました。定石も無しにしましたので、2手目以後は考えます。プレイアウト
に時間がかかるので、序盤は考える時間が長すぎです。点数ベースの評価関数を弄り
倒して勝率っぽい数字をでっちあげる事で、勝率の評価関数を使わなくなりました。

今のところ対Zebraは勝ったり負けたりで、強さ的には匹敵するところまで行けたかなと。
両者定石無しなので、純粋にAI部の強さ比較という事で良いのかなぁと自負。

たまにはAI白番(Zebra黒)の棋譜を。自作AIの+2勝ちです。

F5 D6 C4 D3 C3 F4 C5 B3 C2 E3
D2 C6 B4 A3 G4 F3 E6 F7 B5 A4
A6 B6 G3 F6 E7 F8 D7 C7 G6 H5
D8 C1 H6 H4 E8 C8 G5 H7 B1 A1
B2 E2 A2 H3 F1 D1 G7 H8 G8 A5
A7 F2 E1 G1 H1 B7 G2 H2 B8 A8

MCTSじゃあまり強くならないと思っていたのが、ここまで来れて正直本人がびっくり。
アルファ碁のNature論文のお蔭です。

次ステップで強化学習とか考えていたけど、まだ何からどうすれば良いのかわからない(汗

791 名前:535 mailto:sage [2017/04/09(日) 05:10:12.89 ID:h/eXLfOt.net]
相手に守りの手を強要させることが出来る有利な状態をいかに保ってゲームを進めるか。
終盤の要になりそうです。

792 名前:310 mailto:sage [2017/04/09(日) 20:11:13.36 ID:3mOyIMJx.net]
評価関数の評価値計算でmin-Maxの時にやっていたのに、今回はやっていなかった
手抜き箇所を修正し、速度アップを図りました。
プレイアウトの速度が劇的に速くなりました。

最低でも10万プレイアウト貯め無いと、変な答えを返す(だろう)という事で、最大試行
回数の手が最低プレイアウト数を超えていない時は探索延長していました。そのため
序盤で探索延長頻発していましたが、今回の改造でほぼ延長無しになりました。


あと、評価関数のステージ分割を細かくしまして、再計算を開始。

1手20秒設定でやっていますが(他にバックグラウンド探索あり)、10秒でも実用になるかなぁ。
MCTSなオセロとしては、ある程度できちゃった気がする。

793 名前:535 mailto:sage [2017/04/10(月) 22:56:16.99 ID:Sai+9C2+.net]
もしかして>>310さんのAIは世界最強クラスってことですか?
凄すぎ…

794 名前:535 mailto:sage [2017/04/10(月) 23:19:01.03 ID:Sai+9C2+.net]
完成したら論文書いてwebで公開してくださいw
おねがいしますw

795 名前:310 mailto:sage [2017/04/11(火) 07:59:39.45 ID:KmgeOKfx.net]
>>793
いや・・・それはないです。

オセロの場合、定石DBの学習が強さに直結するので、定石DBを持っていないAIは
かなり不利というか、対戦したら勝ち目ありません。何回も対戦するうちに苦手な定石
に誘導されちゃうので、勝ち目なしは確信しています。

また、アルゴリズムの優越比較という意味で、Zebraの定石DBも無しにしましたが、
Zebraの中盤も一昔前のレベルで、決して強くはないという評価をWEBで見た事が
あります。今回Zebraを使用したのは、対戦中に学習モードに切り替える事でどこで
間違えたかがわかりやすいからです。Edaxとはまだ対戦させません。

ただ、個人的に思い込みたいレベルでいうなら、MCTS系のオセロAIでは最強クラス
なんじゃないかなぁと(願望)。なにせ、いまどきオセロAIを開発している人はいないし、
ましてモンテカルロ系で試そうなんて人もいなさそうですから。言ったもの勝ち(汗


アルファ碁の論文のDeepでNeural networkではない部分を適用する事で、min-Maxで
なければ存在価値がないところまで行き着いていたオセロAIでもMCTSで結構強くなれる
事が証明できたかなぁと。本当にアルファ碁様様です。

ブログ作って解説でも作ろうかと準備していましたが、試しに開設したブログサービスでは
アップロードができなかったので、一旦閉鎖しました。どこか良いところないかな。

796 名前:535 mailto:sage [2017/04/13(木) 22:33:44.03 ID:vVAZxoH8.net]
いろいろ試してみてるけどなんか勝利手順DBを充実させるのが一番手っ取り早く強くなる気がする。
いま12万局分棋譜あるけど100万局くらいまで増やしてみるか…
もっと計算リソースが欲しい。

797 名前:310 mailto:sage [2017/04/18(火) 01:24:07.08 ID:Ohai0OaC.net]
評価関数のエポックを更に進めたら180エポック近辺から勝てなくなってきました。
もしかしてたまたま間違ったところが、zebraの弱点をついていたのかも知れないし、
評価関数の値にメリハリがついてきて、逆に見落としが起きやすくなったのかも
知れないし。過学習かも知れないし。

評価関数をブラッシュアップするには、負け手順を棋譜化して、学習データに投入
しなきゃならん。

ところが、負け確定後に例の自爆モードが作動してしまいます。棋譜として使えるよう
にするために、ソルバーを復活させました。ついでに色々やってたら、見なかった事
にしていたバグもとれました。ついでだからと偶数理論を実装したのですが、かえって
遅くなってしまった。他の人はどういう実装しているのだろう。

今の速度だと35手目から読み切らないといけない。今の速度だと時間の予測が難し
いというか、軽く1時間はかかりそう。

798 名前:535 mailto:sage [2017/04/19(水) 21:59:17.68 ID:WjbK3YLE.net]
Ponanzaがディープラーニング取り込みに成功したとかなんとか。
ハードもものすごいものを用意するそうですね。

799 名前:535 mailto:sage [2017/04/21(金) 20:55:54.67 ID:ZLYvyeQY.net]
大分勝率上がってきた。
思考時間長いから数こなせないのが厳しいですね。

25局目
黒(airandom.dll)の勝利回数: 8
白(ai-lv3.dll)の勝利回数: 17



800 名前:535 mailto:sage [2017/04/21(金) 22:05:48.97 ID:ZLYvyeQY.net]
やっぱディープラーニング憧れるなぁ。
俺のAIにもブレークスルーを起こしてくれw






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<322KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef