☆2ちゃんねらーず編・大学入試数学問題集☆
at MATH
93:KARL
01/07/01 14:19
>>49の2)
a,b,c,d>=0, 2(ab+ac+ad+bc+bd+cd)+abc+abd+acd+bcd=16ならば
a+b+c+d>=2/3(ab+ac+ad+bc+bd+cd)である。
f(X)=X^4-AX^3+BX^2-CX+D=0
という4次方程式を考えます。この方程式が4つの非負解 a,b,c,d
をもつとすれば、A=a+b+c+d, B=ab+ac+ad+bc+bd+cd, C=abc+abd+acd+bcd
D=abcdとなります。
そこで、F'(X)=0という方程式をつくると、この方程式は3つの非負解
α,β,γ(min(a,b,c,d)≦α,β,γ≦max(a,b,c,d))をもつことがRolle
の定理から分かります。
F'(X)=4X^3-3AX^2+2BX^-Cですから
α+β+γ=3A/4
αβ+βγ+γα=2B/4
αβγ=C/4
α,β,γ>=0で αβ+βγ+γα+αβγ=2B/4+C/4
B=ab+ac+ad+bc+bd+cd, C=abc+abd+acd+bcdを代入すると
αβ+βγ+γα+αβγ=1/4(2(ab+ac+ad+bc+bd+cd)+abc+abd+acd+bcd)
=4
したがって、1)から
α+β+γ≦αβ+βγ+γα
つまり3A/4≦2B/4 ∴ A≦2/3B
A=a+b+c+d, B=ab+ac+ad+bc+bd+cdを代入して証明おわりです。
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
5081日前に更新/150 KB
担当:undef