2つの封筒問題スレ
at MATH
428:7
10/03/17 21:53:07
>>427
例えば
賞金の組が{5000*2^n,10000*4^n}(n=0,1,2,3,…)に選ばれる確率(99^n)/100^(n+1)
とすれば、最初に確認した金額が5000円の時のみ、交換後の期待値は2倍に
5000円以外を確認した時は交換後の期待値は148/199(≒1.246)倍になる。
つまり、どの金額を確認しても、交換後の期待値の方が1倍になる。
でも、このこと自体は矛盾でもパラドクスでもなんでもない。
確率分布もちゃんと存在するものである。
あくまでも
未確認の金額の期待値は確認済みの金額(金額の期待値ではない)の2倍か約1.246倍
になるのであって、金額確認前に何回も交換したからといって、期待値がどんどん
大きくなるわけではない。中身を確認してないのに一方の金額の期待値が他方の金額の
2倍か1.246倍とすることはできない。この辺のことは240自身が書いた>>345の
ジョークに通ずるものがあるだと思うのだが…。
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
5176日前に更新/254 KB
担当:undef