★東大入試作問者にな ..
[2ch|▼Menu]
508:132人目の素数さん
09/09/13 21:35:13
>>500
aの値によっては発散するんじゃないの?

509:132人目の素数さん
09/09/14 22:33:52
x,yについての方程式
a(x^3-y^3)+b(x^2-y^2)+c(x-y)=0
がx≠yなる実数解をもつための実数定数a,b,cの満たすべき必要十分条件を求めよ。


510:132人目の素数さん
09/09/14 22:45:27
ax^3+bx^2+cx=ay^2+by+cyがx≠yの解を持てばいいので
f(t)=at^3+bt^2+ctとしたとき
f(t)が極値を持つことが必要十分
あとはa=0のときとa≠0のときで場合分けしてうんたらかんたら…
ちょっと前にコピペされてた問題を簡単にした感じかな

511:132人目の素数さん
09/09/15 00:02:37
次の性質をもつ関数 y=f(x) が存在すれば例をあげ,存在しなければそれを示せ.

1.ある閉区間 [a,b] で連続
2.x∈[a,b] において x が有理数のとき,f(x) は無理数で,x が無理数のとき,f(x) は有理数.

# もちろん,大学以降の知識を使えば自明ですが,高校範囲で可能な限り厳密にお願いします.
# 誰でも考え付く問題なので,入試問題として既出であれば教えて下さい.

512:132人目の素数さん
09/09/15 12:23:30
無理数は有理数より多い。

513:132人目の素数さん
09/09/15 17:25:40
>>512
なんぞ

514:132人目の素数さん
09/09/15 22:06:37
>>512
だからそれは自明だけど範囲外だって。

515:132人目の素数さん
09/09/15 22:08:45
それを認めたとして、証明できるの?

516:132人目の素数さん
09/09/15 22:13:44
↑アホ????????

517:132人目の素数さん
09/09/15 22:15:29
できるから問題になっていると恩われ

518:132人目の素数さん
09/09/15 22:35:10
>>380 , >>491
 (4n-4)!!・(2n-3)!!/{(4n-1)!!・(2n-2)!!} = (4n-4)!!・(2n-2)!・(4n)!!/{(4n)!・(2n-2)!!^2} = 2^(2n)・{(2n-2)!/(n-1)!}^2・{(2n)!/(4n)!}

次のマクローリン級数を考える。
 f(x) = Σ[n=1,∞) 2^(2n)・{(2n-2)!/(n-1)!}^2・{(2n)!/(4n)!} x^(n-1)
  = (1/3)Σ[n=1,∞) {(1/2)(3/2)・・・・(n - 3/2)}^2 /{(5/4)(9/4)・・・・・(n - 3/4)・(7/4)(11/4)・・・・(n - 1/4)} x^(n-1)
  = (1/3)Σ[n=1,∞) {Γ(n - 1/2)/Γ(1/2)}^2 /{Γ(n + 1/4)/Γ(5/4)・Γ(n + 3/4)/Γ(7/4)} x^(n-1)
  = (1/3){Γ(5/4)Γ(7/4)/Γ(1/2)^2}Σ[n=1,∞) {Γ(n - 1/2)^2 /Γ(n + 1/4)・Γ(n + 3/4)} x^(n-1)
  = (1/3)・3F2(1/2,1/2,1; 5/4, 7/4; x),    ・・・・ 「一般化 超幾何級数」とか言うらしい。

ここで x=1 とおく。 Whipple の恒等式より
 (与式) = f(1)
 = (1/3)・3F2(1/2,1/2,1; 5/4, 7/4; 1)
 = (π/6)Γ(5/4)Γ(7/4)/{Γ(9/8)Γ(7/8)}^2
 = (π/6)(1/4)(3/4)Γ(1/4)Γ(3/4)/{(1/8)Γ(1/8)Γ(7/8)}^2
 = 2πΓ(1/4)Γ(3/4)/{Γ(1/8)Γ(7/8)}^2
 = 2{sin(π/8)}^2/sin(π/4)
 = 2{sin(π/8)}^2/{2sin(π/8)cos(π/8)}
 = tan(π/8),

519:518
09/09/15 22:51:04
>>380 , >>491

〔Whipple 恒等式〕
 一般化 超幾何級数 3F2(a,b,c; d,e; x) について
 3F2((1/2)+a', (1/2)-a', c; (1/2)+c+e', (1/2)+c-e'; 1)
   = {2^(1-2c)}πΓ((1/2)+c+e')Γ((1/2)+c-e')/{Γ((1+a'+c+e')/2)Γ((1+a'+c-e')/2)Γ((1-a'+c+e')/2)Γ((1-a'+c-e')/2)},

URLリンク(mathworld.wolfram.com)

〔系〕
 3F2(1/2, 1/2, 1; 3/2 +e', 3/2 -e'; 1)
   = (π/2)Γ((3/2)+e')Γ((3/2)-e')/{Γ((2+e')/2)Γ((2-e')/2)}^2

520:518
09/09/15 23:03:12
↑では
 Γ(k)Γ(1-k) = π/sin(kπ),     (0<k<1)
を使いますた。



521:132人目の素数さん
09/09/15 23:09:52
>>518-520
Chapeau!

522:132人目の素数さん
09/09/16 00:24:54
明らかに東大入試の問題には不適

523:132人目の素数さん
09/09/16 11:06:45
なんか一気につまんねースレになったな

524:132人目の素数さん
09/09/16 13:52:05
出題者が高校範囲で解ける解答を持っていなければスレ違い

525:132人目の素数さん
09/09/16 14:38:46
スレ違いとかどうでもいいよ
細かいこといちいち指摘してんじゃねぇ

526:132人目の素数さん
09/09/16 17:29:39
y=e^xとy=log(x+a)がただ1つの共有点をもつとき、2<a<3であることを示せ。

527:猫は残飯 ◆ghclfYsc82
09/09/16 17:39:13
いやいや、この手の計算は確かにChapeauですよね。
こういう計算の中にもいい数学が一杯詰まっていますからね。


528:132人目の素数さん
09/09/16 19:42:04
>>526
e^x=log(x+a)⇔e^(e^x)-x=a
f(x)=e^(e^x)-xとおくと
f'(x)=e^(x+e^x)-1
よってf(x)はx+e^x=0の解αで極大値をとりその値f(α)がaに等しい
ここでx+e^x=0はただひとつの解をもち
-1/2+e^(-1/2)>0…(1)
-2/3+e^(-2/3)<0…(2)
なので-2/3<α<-1/2また
a=e^(e^α)-αであるがe^α=-αより
a=e^(-α)-α
ここでe^(-x)-xは明らかに単調減少であり
2<e^(1/2)+1/2<e^(-α)-α<e^(2/3)+2/3<3 …(3)

(3)より2<a<3
(1)(2)(3)の証明はここでは省いた

529:132人目の素数さん
09/09/16 20:25:34
一応 >>528の(1)(2)(3)について
(1)の証明
2>√e より1/2<e^(-1/2)
(2)の証明
e*(2/3)^(3/2)>4√6/9>1より
(2/3)^(3/2)>1/e
2/3>e^(-2/3)

(3)の証明
(3/2)^2<eより3/2<e^(1/2)であるから
2<1/2+e^(1/2)
また
(7/3)^(3/2)>3>eより
e^(2/3)<7/3なので
2/3+e^(2/3)<3

530:132人目の素数さん
09/09/16 22:37:08
>>528

 W・exp(W) = c, c≧0,
の唯一の実根を W(c)と定義する。(Lambertの W-函数)
然らば、
 α = -W(1),
ここに
 W(1) = 0.56714329040978387299996866221036・・・・
はオメガ定数。

∴ a = W(1) + 1/W(1) = 2.3303661247616805832251704391621 のとき
両曲線は (x,y) = (-W(1), W(1)) で接する。

URLリンク(mathworld.wolfram.com)
URLリンク(mathworld.wolfram.com)

531:132人目の素数さん
09/09/16 22:57:56
次の条件を満たす領域Aの体積を求めよ。
☆領域Aに含まれる任意の点Pはx軸、y軸、z軸までの距離がいずれもa(>0)以下。

532:132人目の素数さん
09/09/16 23:12:39
>>531
x^2+y^2≦a^2
y^2+z^2≦a^2
z^2+x^2≦a^2
で結局垂直三円柱の共通部分になる
んじゃね?

533:132人目の素数さん
09/09/16 23:34:06
>>528のf(α)は極小値だった

534:132人目の素数さん
09/09/16 23:53:49
>>532
です.
さすがに簡単すぎですかw

535:132人目の素数さん
09/09/17 00:40:19
>>534
2004年名市大に同一問題

536:132人目の素数さん
09/09/17 10:08:38
>>528
>a=e^(e^α)-αであるがe^α=-αより
>a=e^(-α)-α
a=e^(e^α)-α=e^(-α)-α=-1/α-α
までやればもっと楽だと思う
αの範囲も-1<α<-1/2まで絞るだけでいいし


537:132人目の素数さん
09/09/17 14:05:54
全ての自然数nに対して,|a[n]|<1ならば
lim[n→∞]a[1]a[2]…a[n]=0
であるといえるか。
いえるなら証明し、いえないなら反例をあげよ。

538:132人目の素数さん
09/09/17 14:07:03
↑「対して」の後の「,」は不要でした。

539:132人目の素数さん
09/09/17 14:21:01
>>537
いえない
反例
a_n=(1/2)^{(1/2)^(n-1)}
のとき
積の極限は1/4

540:132人目の素数さん
09/09/17 14:30:19
>>537
全ての自然数nに対してb_n<0ならば
Σ[1,∞]b_n=-∞は常に成り立つか?

って問題と同値
成り立つ訳ない

541:132人目の素数さん
09/09/17 22:24:08
>>537
家ない。
判例
 a[k] = {(k+1)/k}{(k-1+α)/(k+α)},
のとき
 a[1]a[2]……a[n] = (n+1){α/(n+α)} → α,  (n→∞)

542:541
09/09/17 22:35:14
>>537

 a[k] = 1 - (1-α)/{k(k+α)} < 1,
 -1/3 < α < 1 より
 |a[k]| < 1,

543:132人目の素数さん
09/09/18 01:37:32
f(x)=x^n/e^xとする.
全ての自然数nに対して、
lim[a→∞]∫[0,a]f(x)dx
が収束することを示せ。

544:132人目の素数さん
09/09/18 02:00:37
>>543
∫x^n*e^(-x)dx=-x^n*e^(-x)+n∫x^(n-1)*e^(-x)dx

帰納法で終了


545:132人目の素数さん
09/09/18 02:08:53
>>543 正解です。
あとは面倒なだけですねorz

3次方程式x^3+ax^2+bx+c=0の解が全て正の数であるとき、
ab/c>7を示せ。

546:132人目の素数さん
09/09/18 02:15:43
ab/c≧9に訂正をば。

547:132人目の素数さん
09/09/18 02:28:40
>>545
3つの正の解をα,β,γとすると
ab/c=(α+β+γ)(αβ+βγ+γα)/αβγ=
(α+β+γ)(1/α+1/β+1/γ)≧(1+1+1)^2=9 (コーシ−シュワルツより)



548:132人目の素数さん
09/09/18 06:10:13
>>545
応用してみた。
x^3-ax^2+bx-c=0(a,b,cはともに実数)

(1)この方程式が正の解しか持たない時、ab/c≧9であることを示せ。
(2)いまサイコロを三回投げて、順に出た目をa,b,cに代入した。
この時、この方程式の解が正整数解しかもたない確率を求めよ。

549:132人目の素数さん
09/09/18 08:38:23
>>548
(1)>>547

(2)0<α≦β≦γとしておく
(1)よりab/c≧9なのでc≦4
c=1のとき、α=β=γ=1⇔a=3,b=3
c=2のとき、α=β=1,γ=2⇔a=4,b=5
c=3のとき、α=β=1,γ=3⇔a=5,b=7(不適)
c=4のとき、α=β=1,γ=4⇔a=6,b=9(不適)
または α=1,β=γ=2⇔a=5,b=8(不適)
求める確率は2/216=1/108






550:132人目の素数さん
09/09/18 09:10:42
東工大に類題あるな

551:132人目の素数さん
09/09/18 10:02:44
あまり(1)と(2)に関連がないような気もする

552:132人目の素数さん
09/09/18 14:55:23
3点P(0,0,1),Q(0,1,0),R(0,0,1)を頂点とする正三角形の板Sを考える。
(1)Sをz軸のまわりに1回転させたとき、Sが通過する点全体のつくる立体Tの体積を求めよ。
(2)Tをy軸のまわりに1回転させたとき、Tが通過する点全体のつくる立体Uの体積を求めよ。

553:132人目の素数さん
09/09/18 15:57:53
n,m,l,kを正の整数とする。
以下の式を満たすn,m.l.kの組を全て求め、
それが全てであることを示せ。

(n!)^k+(m!)^k=(l!)^k

554:132人目の素数さん
09/09/18 16:13:10
誰か >>511 をお願い


555:132人目の素数さん
09/09/18 16:53:52
>>553
n≦m<lで考える
n<m<lのとき
(n!)^k+(m!)^k=(l!)^k の両辺(n!)^kでわると
1+(P(m,m-n))^k=(P(l,l-n))^k …(1)
(1)の左辺はn+1で割って1余り右辺はn+1で割り切れるので不適

ゆえに m=nとなり
2(n!)^k=(l!)^k
両辺 (n!)^kで割って
2=(P(l,l-n))^k
これを満たす組み合わせは
k=1, m=n=1,l=2のみ

556:132人目の素数さん
09/09/18 17:10:02
>>555
正解、簡単すぎかな
スマートな面白さを求めたつもりだったけど・・・

557:132人目の素数さん
09/09/18 17:21:11
とりあえず回答が出てある程度時間経ったら出題者は自分の用意した回答だしてくれ



558:132人目の素数さん
09/09/18 22:23:53
>>543
 f(x) = (x^n)・e^(-x),
は x=n で最大値 f(n) = (n/e)^n をとる。
y>0 のとき
 f(2n+y) = f(2n)・(1 + y/2n)^n・e^(-y) < f(2n)・e^(y/2)・e^(-y) = f(2n)・e^(-y/2),
a>2n のとき
 (与式) = ∫[0,2n] f(x)dx + ∫[2n,a] f(x)dx
  = ∫[0,2n] f(x)dx + ∫[0,a-2n] f(2n+y)dy
  < ∫[0,2n] f(n)dx + f(2n)∫[0,a-2n] e^(-y/2)dy
  = 2n・f(n) + 2・f(2n){1 - e^(-(a-2n)/2)}
  → 2n・f(n) + 2・f(2n),    (a→∞)

559:558
09/09/18 22:28:54
>>543
 >558 より与式は有界。
 また、与式はaについて単調に増加するから、収束する。

560:132人目の素数さん
09/09/18 23:57:00
>>554
>>511は簡単すぎて誰もトナカイ

561:132人目の素数さん
09/09/19 00:01:35
簡単とか難しい以前に解こうかなって思わせる要素が全くない、面白くない
あれだったら自分の用意してた答え書いてみ

562:132人目の素数さん
09/09/19 00:04:16
と解けない人が回答を欲しがっています

563:132人目の素数さん
09/09/19 00:05:14
>>560
トナー買うなら・・・
URLリンク(www.tonakaibin.com)

564:132人目の素数さん
09/09/19 00:06:47
>>563
トナカイの便w

565:132人目の素数さん
09/09/19 00:16:06
2/3=1/2+1/6

11/14=

566:132人目の素数さん
09/09/19 00:17:44
>>552 (1)
 Rを頂点とする2つの円錐と、xy-平面とで囲まれた部分。→ T
 外側の円錐は、RP,RQを通り、底半径1,
 内側の円錐は、PQの中点を通り、底半径1/√2,
 V(T) = (1/3)π- (1/6)π = π/6,

567:132人目の素数さん
09/09/19 00:18:26
>>561の面白い問題投下に期待


568:132人目の素数さん
09/09/19 02:04:03
確かに解答者の解答が示されないと面白みが半減するな

569:132人目の素数さん
09/09/19 02:04:27
一辺が10の立方体がある。
この中に半径1/√5の球を立方体からはみださないようにいれていく。
立方体に詰めることができる球の最大の個数を求めよ。

570:132人目の素数さん
09/09/19 08:45:57
>>569
秋山仁乙

571:132人目の素数さん
09/09/19 10:03:36
>>568
解けていないのに,解いて欲しいが為に出題する奴が多いから無理

572:132人目の素数さん
09/09/19 10:13:21
>>511の出題者は、「問題」を思いついただけで、
高校課程の知識での解等例はおろか
「もちろん,大学以降の知識を使えば自明」な解答すら実は書けないのではないか。

573:511
09/09/19 11:23:26
高校範囲内の解答はもちろん用意していますが、
誰もトナカイのでお蔵入りです。


574:132人目の素数さん
09/09/19 11:46:09
そりゃ残念だったな

575:132人目の素数さん
09/09/19 11:48:47
真っ赤なIDのトカナイさん

576:132人目の素数さん
09/09/19 11:55:38
有理数と有理数の間には必ず無理数が存在し、
無理数と無理数の間には必ず有理数が存在することをいえばよいのかな?

577:132人目の素数さん
09/09/19 11:59:41
↑スルーしてくださいorz

578:132人目の素数さん
09/09/19 12:06:31
>>512がといてるやん

579:132人目の素数さん
09/09/19 12:11:25
無理数はいくらでも有理数で近似できることを用い、連続性の定義を振り返ればよい

580:132人目の素数さん
09/09/19 12:37:26
>>578
>>512は範囲外だろ。

581:132人目の素数さん
09/09/19 12:50:21
どいつもこいつも歯切れが悪くてイライラするぜ

582:132人目の素数さん
09/09/19 13:26:03
>>570はげ山仁がだしてたの?
研究室で結晶格子みながらこのスレみたから投下してみた

583:132人目の素数さん
09/09/19 13:58:47
半円x^2+y^2=1(y≧0)上に2点P,Qがある.線分PQの中点をRとする。
P,Qが半円上をそれぞれ自由に動く時、Rの存在する領域を図示せよ。

584:132人目の素数さん
09/09/19 14:07:13
>>565
1/2 + 1/4 + 1/28 =11/14

585:132人目の素数さん
09/09/19 14:07:34
>>583
計算による問題は既出。
幾何的に解くのは,大数1対1対応の演習(旧課程版)にあり。


586:132人目の素数さん
09/09/19 16:20:55
一辺が2の正三角形ABCがある。
辺AB,辺BC,辺CAを軸に正三角形ABCを回転させてできる立体の共通部分の体積を求めよ。

587:132人目の素数さん
09/09/19 16:33:13
東大志望だけどこのスレ見てると死にたくなったww勉強してくる

588:132人目の素数さん
09/09/19 18:16:30
スレリンク(math板)とか他にも出題スレはあるよ


589:132人目の素数さん
09/09/20 00:26:32
大数かなんかの裏表紙の広告にあった問題

正七角形ABCDEFGにおいてAB=x、AC=y、AD=zとおくと
y^2/x^2+z^2/y^2+x^2/z^2=5となることを示せ。

590:132人目の素数さん
09/09/20 01:32:15
>>583
 問題の半円から、中心(-1/2,0) 半径1/2 の小さい半円と、 中心(1/2,0) 半径1/2 の小さい半円と を除いた領域。
          (x + 1/2)^2 + y^2 ≦ (1/2)^2,    (x - 1/2)^2 + y^2 ≦ (1/2)^2,

 R(x,y) がこの領域内にある ⇔ Rを通りORに垂直な直線と半円とが2点で交わる(P,Q)。

591:132人目の素数さん
09/09/20 02:47:14
>>589

外接円の半径をR とする。
 x = AB = 2R・sin(∠AOB/2) = 2R・sin(π/7) = −2R・sin(8π/7),
 y = AC = 2R・sin(∠AOC/2) = 2R・sin(2π/7),
 z = AD = 2R・sin(∠AOD/2) = 2R・sin(3π/7) = 2R・sin(4π/7),
よって
 y/x = 2cos(π/7),
 z/y = 2cos(2π/7),
 x/z = −2cos(4π/7) = 2cos(3π/7),
よって
 (y/x)^2 = 2{1 + cos(2π/7)},
 (z/y)^2 = 2{1 + cos(4π/7)},
 (x/z)^2 = 2{1 + cos(6π/7)},
よって
 (与式) = 5 + {1 + 2cos(2π/7) + 2cos(4π/7) + 2cos(6π/7)}
   = 5 + Σ[k=0,6] cos(2kπ/7)
   = 5,

-------------------------------------------------
(注) cos(2π/7), cos(4π/7), cos(6π/7) は
 1 - T_7(u) = (1-u)(1 -4u +4u^2 +8u^3)^2 = 0,
の根で u≠1 のもの、すなわち
1 -4u +4u^2 +8u^3 = 0,
の3根である。(本問では使わないが)

592:591
09/09/20 02:52:37
>591 の訂正
 1 - T_7(u) = (1-u)(1 +4u -4u^2 -8u^3)^2 = 0,
の根で u≠1 のもの。
スマソ.

593:132人目の素数さん
09/09/20 03:01:35
1の7乗根ζは難問の宝庫
ζ+ζ^2+ζ^4 の値を求めよ

594:132人目の素数さん
09/09/20 04:30:19
>>593

とっかかりすりゃわからん・・・ところで、ζってなんて読むの?あと7乗根って1含む?

595:132人目の素数さん
09/09/20 04:51:26
>>594
 z = ζ + ζ^2 + ζ^4 とおく。
 z* = ζ^6 + ζ^5 + ζ^3,

 z + z* = (1 + ζ + ζ^2 + ζ^3 + ζ^4 + ζ^5 + ζ^6) -1 = -1,
 zz* = (1 + ζ + ζ^2 + ζ^3 + ζ^4 + ζ^5 + ζ^6) + 2 = 2,

 Z^2 + Z +2 = 0,
∴ z = {-1 + (√7)i}/2,

596:132人目の素数さん
09/09/20 06:25:34
>>586
 A(√3,0) B(0,1) C(0,-1)
とする。
AB: y = 1 - x/√3,
AC: y = x/√3 -1,
領域D:
 1 - (√3)x < y < (√3)x - 1,    {(1/√3) < x < (√3)/2}
 (x/√3) - 1 < y < 1 - (x/√3),   {(√3)/2 < x < √3}
の体積を求めて3倍する。
 x '(y) = (√3)(1-|y|),
 z(x,y) = √{(x ')^2 - x^2} = √{3(1-|y|)^2 - x^2},
 V = ∫_D z(x,y) dxdy = ・・・

597:132人目の素数さん
09/09/20 07:49:27
>>558

〔補題〕
x>0 のとき
 (1 + x/n)^n < e^x,

(略証)
 (左辺) = Σ[k=0,n] C[n,k] (x/n)^k
   = Σ[k=0,n] {n(n-1)(n-2)・・・・ (n-k+1)/(n^k)} (1/k!) x^k
   < Σ[k=0,n] (1/k!) x^k
   < e^x,

598:132人目の素数さん
09/09/20 08:25:15
>>560 >>563

URLリンク(www.youtube.com) 02:22 モー娘。
URLリンク(www.youtube.com) 02:52 歌詞付
URLリンク(www.youtube.com) 02:15 池田淳子
URLリンク(www.youtube.com)   MP3TUBE
URLリンク(www.youtube.com) 03:04
URLリンク(www.youtube.com) 02:35

599:132人目の素数さん
09/09/20 08:28:20

日本には「鼻蔵」という僧がいて、クロード・コンピューティングの開祖とされている・・・・


これも今は昔、奈良に、蔵人得業 恵印といふ僧ありけり。
鼻大きにて、赤かりければ、「大鼻の蔵人得業」といひけるを、後(のち)ざまには、ことながしとて、「鼻蔵人」とぞいひける。
なほ後々(のちのち)には、「鼻蔵(はなくら)、鼻蔵」とのみいひけり。

         --宇治拾遺物語「蔵人得業猿沢の池の龍の事」より--

600:132人目の素数さん
09/09/20 14:45:48
>>579
できればもっと詳しくお願いします

601:132人目の素数さん
09/09/20 18:45:59
>>600

この文言で明らかじゃないなら勉強が不足しているよ君

602:132人目の素数さん
09/09/20 20:13:08
>>601
お前、ここが高校生向けの問題を作るスレだって自覚してる?

603:清書屋
09/09/20 20:44:25
>>510

a≠0 のとき f(t) = aT^3 + (c - b^2 /a)T + 定数項, (T = t + b/3a)
 f '(t) = 3aT^2 + (c -b^2 /a),
 a(c - b^2 /a) = ac - b^2 < 0 のとき、極値を持つ … ○
 a(c - b^2 /a) = ac - b^2 ≧ 0 のとき、極値を持たない … ×
a=0 のとき
 b≠0 のとき、f(t)は2次式、極値を持つ … ○
 b=0 のとき、f(t)は1次式
  c≠0 のとき、極値を持たない … ×
  c=0 のとき、定数 … ○

∴ 求める条件は
 a≠0 かつ ac-b^2 < 0,
 a=0 かつ b≠0,
 a=b=c=0,
のいずれか。

604:132人目の素数さん
09/09/20 21:13:43
>>593
2000年4月号の学力コンテストに類題あり、
a,b,cは相異なる複素数で、a^2=b、b^2=c、c^2=aであるとする。このときa+b+cは実数でないことを示せ。

605:132人目の素数さん
09/09/20 21:47:17
>>604
こんな簡単な問題が出るかなぁ

606:132人目の素数さん
09/09/20 21:50:05
>>593
cos(2π/7)+cos(4π/7)+cos(8π/7) を求めよ
なんて形で出題したら、受験生の何割が完答するだろう?

範囲外か

607:132人目の素数さん
09/09/20 21:52:10
>>606
sin(\pi/14)をかけて割ればいいから範囲内です。
数学オリンピック1963年[5]がこの問題でした。

608:595
09/09/20 21:55:55
>>604
 a^8 = b^4 = c^2 = a,
 a=0,1 とすると a=b=c となり、題意に適さない。
∴ a^7 =1, a≠1,
∴ a = exp((2kπ/7)i) = ζ,  (1≦k≦6)

以下 >>595 と同じ。

609:607
09/09/20 21:56:44
ついでに言えば、2007年数学検定2段で\sum_{k=1}^{180}sin k°= cot 0.5°を示せというのがありました。
この計算は、定積分 \lim_{n \to \infty} \sum_{n}^{k=1} (1/n) \sin( \pi k/n) を求めるのにも使えます。

610:132人目の素数さん
09/09/20 22:49:23
>>602
無理数の定義自体、有理数でない実数、程度の高校数学で
高校生にどんな解答を期待しているのか、マジで知りたい。

611:132人目の素数さん
09/09/21 03:12:58
>>398(訂正版 >>404
n=3のとき題意を充たすpが存在しないことを示せばよい。
(n=k≧4のときに存在すれば、p=a_{k-2}と置き直してa_3=3となる)
a_3=3となるには、a_2の各位の値は3が1つと残りは1でなければならない。
ところでa_2はpの各位の数の積なので、a_2の素因数としてありうるものは2、3、5、7。
素因数に2、5を含むとすると、a_2の1の位が偶数または5となり不適。
よってa_2=3^s・7^t(s、tは非負整数)とかける。
ここでa_2の1の位としてありうるものは1、3、7、9であるが、それらと3あるいは7との積の10の位は偶数であるから、
任意の(s,t)について、帰納的にa_2の10の位は偶数である。これとa_2が2桁以上の整数であることにより、a_3は偶数となる。
従ってa_3=3とはなりえないから、題意は示された。

帰納的に〜あたりは端折りすぎというか、言葉遣いが間違ってる気がするが伝わるだろうか…。
あと、この議論だと1、7、9にもなりえない気が…。

612:132人目の素数さん
09/09/21 05:41:45
>>610
ヒント 中間値の定理

613:132人目の素数さん
09/09/21 19:05:26
なるほど

614:132人目の素数さん
09/09/21 20:56:20
面白い問題を思いついた.完璧に解ける高校生は非常に少ないと思う.
入試ではタブーだと思うので実際に出題される事はないと思いうが.

n,m を2以上の整数とするとき,次の関数の導関数を求めよ.
y=[n]√(x^m)

615:132人目の素数さん
09/09/21 21:58:54
xの範囲も指定せずに導関数を求めよとか有りなのか

616:132人目の素数さん
09/09/21 22:04:40
>>615
mが奇数ならx>=0のみ、mが偶数なら全実数ということでは?

617:132人目の素数さん
09/09/21 22:07:06
x^(m/n)じゃなくて?

618:132人目の素数さん
09/09/21 22:13:44
>>614
ガウス記号かと思った

619:132人目の素数さん
09/09/21 22:21:19
俺もガウス記号に見えて何言ってんだろうって思った

620:132人目の素数さん
09/09/21 22:46:46
>>615
実数値関数として意味を持つ x の範囲が定義域だろ、普通。
y=√x のときに x>0 とか書かない。

621:132人目の素数さん
09/09/21 22:51:25
>>616
ちょっと全然違う。

622:132人目の素数さん
09/09/21 23:02:27
>>614
{ [n]√(x^m) }’= { x^(m/n) }’=(m/n) x^(m/n−1)=(m/n) [n]√{ x^(m−n) }

ではどこがあかんのですか?

623:132人目の素数さん
09/09/21 23:20:13
f(x)=e^(m/n)logx
f'(x)=e^(m/n)logx*m/n*1/x
=m/n*x^(m/n-1)

これなら教科書にも載ってるしな

624:132人目の素数さん
09/09/21 23:21:26
>>619
>>622
俺もそう思った。

625:132人目の素数さん
09/09/21 23:24:47
どうも、思いつき、が多いなあ。

626:614
09/09/21 23:30:00
どうも出題意図が上手く伝わらない.
ではもっとシンプルにして,次の様に修正.

y=[3]√(x) 及び y=[6]√(x^2) の導関数を求めよ.

627:132人目の素数さん
09/09/21 23:37:51
え?[3]√(x)=[6]√(x^2) では?

628:132人目の素数さん
09/09/21 23:45:45
もしかしてあれか、定義にしたがって求めよってやつか?

629:132人目の素数さん
09/09/22 00:05:55
ちゃいますがな

630:132人目の素数さん
09/09/22 00:10:21
「面白さ」を含めて解説きぼんぬ

631:132人目の素数さん
09/09/22 03:09:25
d/dx(|x|)=sgn(x)

632:sage
09/09/22 07:15:42
どっかで同じような流れを見たことがあるような…。

多分出題者は[n]√(x^m)とx^(m/n)の表す意味合いは微妙に違うみたいなことを言いたいんだろう。
後者だとx<0は扱えない。高校の教科書の定義は確かそうだったはず。
まぁ「面白さ」は今ひとつ感じないが。

>>627
x=-8とすると
[3]√(-8)=-2
[6]√(-8)^2=2
とかになるが…

633:132人目の素数さん
09/09/22 07:17:43
なんで名前のほうにsageって書いたんだろう。ちょっと吊ってくる。

634:132人目の素数さん
09/09/22 08:06:23
>>626
y=[3]√(x) において
x>0 のとき
y'={x^(1/3)}'=(1/3) x^(-2/3)=1/[3]√(x^2)
x<0 のとき
y'={−(-x)^(1/3)}'=−(1/3) (-x)^(-2/3)・(-1)=1/[3]√(x^2)
よって x≠0 のとき y'=1/[3]√(x^2)

y=[6]√(x^2)において
x>0 のとき
y'={x^(1/3)}'=(1/3) x^(-2/3)=1/[3]√(x^2)
x<0 のとき
y'={(-x)^(1/3)}'=(1/3) (-x)^(-2/3)・(-1)=−1/[3]√(x^2)


635:132人目の素数さん
09/09/22 09:49:04
>>634
アナルほど

636:132人目の素数さん
09/09/22 09:54:44
原点を通らず、全実数で定義される関数f(x)は、原点との距離が最短である点で原点中心の円に接するということは正しいか?
正しいなら証明を与え異なれば反例を与えよ

637:132人目の素数さん
09/09/22 09:59:42
正しい訳ないじゃん。
レギュラりティーに関する記述がない。

638:132人目の素数さん
09/09/22 10:24:33
y=[x]+1とか
もちろん[ ]はガウス記号

639:132人目の素数さん
09/09/22 17:55:31
>>634
そうすると y=[3]√x を微分するとき
安直に y=x^(1/3) とかするのは本当は駄目なんだね

640:132人目の素数さん
09/09/22 18:12:24
f(x)=|x|+1とかいくらでもあるわな

641:132人目の素数さん
09/09/22 18:15:11
>>636は微分可能性を付け忘れたお馬鹿サン

642:132人目の素数さん
09/09/22 19:33:02
半径1の球上に、無作為に2つの点をとる.この2点間の距離の期待値を求めよ.

643:132人目の素数さん
09/09/22 19:46:26
線積分すりゃいいよ

644:132人目の素数さん
09/09/22 20:11:45
>>636
「原点を通ら(ない)・・・関数」

という表現は、

カス教師の作った問題やFランク大入試ならまだしも、

東大入試ではあるはずがない。

645:132人目の素数さん
09/09/22 20:16:06
(0,1), (1,-1), (2,-1) を通る二次関数を求めよ、とかいう問題とかね。よくあるけどやめてほしいよな。

646:132人目の素数さん
09/09/22 20:54:32
いやです。

647:132人目の素数さん
09/09/22 21:42:24
>>644
なぜ?

648:132人目の素数さん
09/09/22 21:54:12
>>647
「関数」と「関数のグラフ」を混同するような馬鹿なことは
しないってことだよ。

649:132人目の素数さん
09/09/22 22:01:40
>>645はどう書けば満足なんだ?
きちんとしたグラフの定義は高校ではやらない。
重箱の隅を突付いて嬉しいか?


650:132人目の素数さん
09/09/22 22:30:08
>>639
有体に言えばそういうことだ

651:132人目の素数さん
09/09/22 23:10:05
>>649
きちんとしてるかどうかは別として、
高校数学においても関数とグラフは別物だろ。

「2次関数〜〜とx軸との交点の個数」といった表現も生徒の答案ではよく見るが、
教科書や入試問題ではそういう表現はされていないはずだから、
これでいいじゃないかと主張する高校生がいたら勉強不足だと言いたい。
そのへんは理解度が試されるところだと思うから、厳しくした方が受験生のためだ。

ただ、式とそのグラフを同一視するということはままあって、
「放物線y=x^2」というような書き方は珍しくないのだが。

652:132人目の素数さん
09/09/22 23:11:51
まず教科書に定義を書いているかが問題だ

653:132人目の素数さん
09/09/22 23:31:20
全実数で定義され、かつ微分可能な関数f(x)のグラフは、
原点との距離が最短である点で原点中心の円に接するということを示せ。
ただし、f(0)≠0である。

だったら正しい?
問題出したというより疑問として出したんだけど

654:132人目の素数さん
09/09/22 23:44:16
>問題出したというより疑問として出したんだけど

655:132人目の素数さん
09/09/22 23:52:35
>>634
目から鱗です。。。

656:だいすけ ◆jcXETTeIVg
09/09/23 00:07:51
今日、来年理1受けることを決めたw

で、問題。

=========================================================================================

ある自然数の2乗で表すことのできる数を平方数と呼ぶ。
1^2=1,2^2=4,3^2=9,4^2=16・・・(中略)・・・2010^2=4040100,2011^2= 4044121,….であるので
平方数を小さい順に記述すると、
1,4,9,16・・・(中略)・・・,4040100,4044121,・・・・(以下永遠に続く)
である。
ある自然数nは、平方数であり、nを10進法で記述したとき各桁の数字がすべて1である。
n を求めよ。

=========================================================================================

って、平方数かじったことある人なら楽勝かもしれないけど、
「東大入試」って考えれば、いいよね?(でもかんたんすぎる?解き方もいろいろあるし)

657:だいすけ ◆jcXETTeIVg
09/09/23 00:13:02
もひとつ。

=========================================================================================

xy座標平面上に、原点Oを中心とし半径1の円C、および、円Cの円周上に相異なる点P、点Qがあり、PQ=aである。
また、△OPQの面積を2等分する直線lがある。
直線lと△OPQの交点を点M、点Nとするとき、線分MNの長さの最小値を a を用いて表せ。

=========================================================================================

(実は数学から長らく離れてたので、東大入試の難易度、年々かんたんになってるということくらいしかあまり知らない・・・)

658:132人目の素数さん
09/09/23 00:17:16
2^X=X^2の実数解Xを求めよ。

こんなのどうだろう。
ちょっと逸脱気味だし、満点取るやついないだろうな…

659:132人目の素数さん
09/09/23 00:42:30
>>658
X^(1/X) = 2^(1/2),
X = 2,4

660:132人目の素数さん
09/09/23 01:30:23
>>656
条件より、ある正整数kを用いて、
n=(10^k-1)/9
とあらわせる。
これより、
9n=10^k-1……(※)
以下では法4で考える。
nは平方数なので、0,1と合同になるが、0と合同になるのはnが4の倍数のときである。
4の倍数の下一桁には1が現れないことから、nは1と合同となる。
9が1と合同であることとあわせて、(※)の左辺は1と合同になる。
したがって、
10^k-1≡1⇔10^k≡2⇔2^k≡2⇔2^(k-1)≡1
k-1≧2のとき、2^(k-1)は4の倍数になるから、
k-1=0,1⇔k=1,2
前者のときは、
n=1
後者のときは、
n=11
nは平方数なので、求める数はn=1である。

661:132人目の素数さん
09/09/23 02:09:08
>>660
なるほどなあ いい問題や

662:132人目の素数さん
09/09/23 02:10:43
じゃあオレからも一題。

y=x^2 と x^2+y^2+z^2=1で囲まれる体積の、小さいほうの体積を求めよ。

663:132人目の素数さん
09/09/23 02:11:27
どこがいい問題なんだか

664:132人目の素数さん
09/09/23 03:07:28
円C_a,C_b,C_cは互いに3点で外接する。
その三点を通る円の面積をS
C_a,C_b,C_cに囲まれた部分の面積をS'とする
この時S'/Sの最大値を求めよ

665:>>656=だいすけ ◆jcXETTeIVg
09/09/23 03:13:11
>>660

あってます。
けど、「nは平方数なので、0,1と合同になる」の部分、東大入試的には説明不足で減点にならないのかなぁ・・・

あと、2^(k-1)≡1 がわかった段階で、そのあとは、
(mod 4の考えから少し(?)離れれば)
「k>=2 のとき2^(k-1)は2の倍数なので、題意を満たさない。また、k=1のとき、n=1。これは題意を満たす。答えは1」
で終わる。

たぶん、「正整数pについて、p^2≡0 または p^2≡1 (mod 4)」ってのを知ってたから、こう解いたのだと思いますが、
ちょっと実験すれば、回答は5行で書けます。




666:132人目の素数さん
09/09/23 03:45:46
>>656
難易度A*だな

667:132人目の素数さん
09/09/23 04:11:34
秒針、短針、長針をもった、正確に動いている時計がある。
この3本の針について、どの2本の針のなす角も120°である瞬間は存在するか。

668:132人目の素数さん
09/09/23 04:40:47
命題P,Qがある。P,Qは真か偽か不明だが少なくとも一方は真である。
続き作れ

669:だいすけ ◆jcXETTeIVg
09/09/23 05:05:50
>>667

それぞれの針は、なめらかに動くの?それとも、(たとえば秒針なら)1秒ごとに、2π*(1/60)だけ「カチっ」って、瞬間移動っぽく動くの?
(分針は必ずなめらかに動くんだっけ?いつもデジタル時計しか見てないからわすれた)

>>668

Ans,

命題「>>668」は真か偽か不明である。

670:132人目の素数さん
09/09/23 09:18:18
数列{a[n]}は
漸化式a[n+2]=(a[n+1]+a[n])/2とa[1],a[2] によって定まる数列である。
lim[n→∞]a[n]=αとおくとき、
|a[1]-α|≧|a[2]-α|を示せ。

(☆漸化式を解かない方法てあるかな?)


671:132人目の素数さん
09/09/23 10:15:09
誰か>>658を解ける強者いない?
ちなみにコンピュータは使わないでね。
>>659は違います。実数解は全部で3つ存在してます。

672:132人目の素数さん
09/09/23 10:57:12
ま、どうでもいいけど、問題としてどんな面白みを感じてるのさ?

673:132人目の素数さん
09/09/23 12:21:55
X^2=(-X)^2=2^X
2^(-X)=(-X)^(-2)
2^(1/(-2))=(-X)^(-1/X)
1/√2=t^(1/t)

さて…?

674:132人目の素数さん
09/09/23 12:27:06
x<0で片や単調増加、片や単調減少
中間地の定理から-0.5と-1の間に零が一個ある、程度でいいんじゃねえの

675:うんこ
09/09/23 14:05:12
-0.76あたりで3つめをとるな!
しかし、673のようにx乗根を取ったときその変形が同値なのかわからんな。

676:132人目の素数さん
09/09/23 17:45:30
任意の自然数k,mについて
a^n+b^n=c^(km+1)
が成立するような(a,b,c)の組は無限個存在することを示せ.

677:132人目の素数さん
09/09/23 17:46:56
× a^n+b^n=c^(km+1)
○ a^m+b^m=c^(km+1)

678:132人目の素数さん
09/09/23 18:10:21
>>561=>>632=>>672
文句ばっかり言ってるね。
自分が投下した問題を吊るしてみなさいYO

679:132人目の素数さん
09/09/23 18:11:16
実際つまらんから言われても当然

680:132人目の素数さん
09/09/23 18:12:21
{a[n]}(n=1,2,3,…)は各項が正の実数からなる数列で、
初項a[1]から第n番目の項a[n]までの和をS[n]とおく。
a[n]=√S[n]を満たしているとき、a[n]の一般項を求めよ。

681:だいすけ ◆jcXETTeIVg
09/09/23 18:19:45
>>656 で出題したやつのかんたんな解答例

nは題意により奇数。一般に偶数の2乗は偶数。ゆえに、∴n=(2k+1)^2 (kは非負整数)とおける
するとn=(2k+1)^2=4*(k^2)+4*k+1 ゆえにn-1=4*(k^2)+4k=4(k^2+k)
題意よりn-1の下1桁は0であるので、4(k^2+k) = 0
(∵ 4*非負整数 の下1桁が0になるのは、この非負整数が0のときだけである)
∴ n-1=0 ゆえにn=1 これは題意を満たす。よって答えは n=1

===============================

>>657
で出題したやつ、だれも解いてない。だれか解いてくれぇ。。

===============================

>>676 (>>677

a^m+b^m=c^(km+1) ⇔c = (a^m+b^m)の(km+1)乗根
m,kの値がいくつであっても、a,bは変数であるので、a,bが実数全体を動くことを考えると、(a^m+b^m)は無限個の値をとる。
また、(km+1)は、a,bの値に依存しない。
ゆえに、c( = (a^m+b^m)の(km+1)乗根)も、(a,bの値に依存するとはいえ)無限個の値をとる。
よって、題意を満たす(a,b,c)の組は無限個存在する。■


682:132人目の素数さん
09/09/23 18:25:07
>>681
>4*非負整数 の下1桁が0になるのは、この非負整数が0のときだけである

ダウト
例えば非負整数=5では?

683:132人目の素数さん
09/09/23 18:37:10
>>680
大数の宿題かなんかだっけ?
その問題

684:681
09/09/23 18:39:42
>>681



====
題意よりn-1の下1桁は0であるので、4(k^2+k) = 0
(∵ 4*非負整数 の下1桁が0になるのは、この非負整数が0のときだけである)
====
これ、ウソだった。(4*40=160とか)

正しくは、たとえば、
===
n-1が2桁以上のとき、n-1 ( = 4(k^2+k))は5で割り切れ、これを満たすkは、0のみ。
しかしこのとき、n=(2k+1)^2=1ゆえnは1桁。よって矛盾し、題意を満たさない。
一方、n-1が1桁だと仮定すると、n=1である。これは題意を満たす。よって答えは1
===

685:132人目の素数さん
09/09/23 18:50:05
関数f(x)は任意の実数について定義され、実数値をとる関数であり、以下の2つの条件をともにみたす。
f(x)としてありうるものをすべて求めよ。

*任意の実数xについてf''(x)> 0(第2次導関数が常に正の値)である。
*任意の相異なる実数a,bに対してy=f(x)上の2点A(a,f(a)),B(b,f(b))を考えたとき、
線分ABとy=f(x)で囲まれる部分の面積は |a-b|^3 である。

686:132人目の素数さん
09/09/23 18:53:26
>>684
>n-1が2桁以上のとき、n-1 ( = 4(k^2+k))は5で割り切れ、これを満たすkは、0のみ

意味不明。
そもそも>>656はnの桁数が2以上のときn=1...11≡3(mod4)で平方剰余にならないことからあっさり終了する。
東大にこんな知ってるか知ってないかの安易な出題はまずされない。

687:132人目の素数さん
09/09/23 18:55:47
>>684
いや k^2+k ( =k*(k+1) )が5の倍数のとき、ダウトだ。。。
最初に解いた答え、どっかゴミバコにすてちった。。。5で割ったことはたしかなんだが。

688:687
09/09/23 18:57:33
>>686
n=1...11≡3(mod4)、知ってたけど、東大受験生的には常識?

689:132人目の素数さん
09/09/23 19:01:02
4の倍数の判別法くらい中学生でも知ってるだろ・・・

690:132人目の素数さん
09/09/23 19:27:21
>>679
多分おまえの方がつまらない

691:297
09/09/23 19:29:58
>>670
 (a[n+1] + 2a[n+2])/3 = (a[n] + 2a[n+1])/3 = ・・・・・・ = (a[1] + 2a[2])/3,
∴ α = (a[1] + 2a[2])/3,

 a[n+1] - α = (-1/2)(a[n] - α) = ・・・・・・ = (-1/2)^n {a[1] - α},

692:132人目の素数さん
09/09/23 19:50:19
>>685
y=6x^2+ax+b

693:132人目の素数さん
09/09/23 19:52:52
>>685
任意の実数xについてf''(x)>0

任意の実数xについてf'(x) が存在
に弱められそうだだが。

694:132人目の素数さん
09/09/23 19:56:38
>>693は勘違い
電電無視してくれ

695:132人目の素数さん
09/09/23 19:59:31
でも確かに広義の凸性があれば、2回微分可能でなくてもいいな。

696:132人目の素数さん
09/09/23 20:04:09
確かに
誰かギリギリの条件の模索頼む

697:132人目の素数さん
09/09/23 20:07:37
>>658
x>0のとき。f(x) = log x/xとすると、f'(x) = (1-\log x)/x^2よりx=eで極大値を持ち、
x<eで単調増加、x>eで単調減少。
2^x=x^2は、logx/x=log 2/2より、x<eでは解はX=2のみ。x>eでは解はX=4のみ。

x<0のとき。y=-xとすると、y^2=2^{-y}よりlog y/y = - log 2/2。このようなyは、0<x<eでf(x)=log x/x
が単調増加するので、0<y<1の間に一意的に存在する。
y = - (2/log(2))*LambertW(log(2)/2)
(LambertW(x)はLambertのW関数で、y=xe^xの逆関数)

698:132人目の素数さん
09/09/23 20:22:21
任意の自然数k,mについて
a^m+b^m=c^(km+1)
が成立するような自然数(a,b,c)の組は無限個存在することを示せ.

699:132人目の素数さん
09/09/23 22:20:32
>>698
これは簡単すぎだろ

700:132人目の素数さん
09/09/24 00:07:46
このスレから6問、2010年度の東大本試に出したら、暴動起こるだろうな

701:132人目の素数さん
09/09/24 01:12:35
>>700

作問者って、このスレ見てるのかな?1人くらいはみてそう

702:132人目の素数さん
09/09/24 01:15:19
>>698

>>677 で同じの出してるじゃん、だいじょうぶ?

703:132人目の素数さん
09/09/24 01:44:37
>>671の解答って結局
X=2、4とあと一つX<0の範囲に存在する解は何なんだ?
グラフ書いてみて何となく想像つく気もするが、高校の知識でこれを解く方法なんてあるのか?

704:132人目の素数さん
09/09/24 01:45:54
>>671じゃなくて>>658だた
訂正

705:132人目の素数さん
09/09/24 02:10:07
ニュートン法。

706:132人目の素数さん
09/09/24 05:49:12
>>703-705
 X = -0.7666646959621230931112044225103・・・


707:132人目の素数さん
09/09/24 06:02:36
>>685の解法おしえて

708:132人目の素数さん
09/09/24 08:00:00
三角形(a,f(a))(b,f(b))(c,f(c))の面積。


709:132人目の素数さん
09/09/24 08:04:57
☆☆☆★最大級の注意を★☆☆☆☆☆

☆☆☆★とくに千葉県、静岡県、東京都や関東で大震災の恐れが★☆☆☆☆☆
☆☆☆★とくに千葉県、静岡県、東京都や関東で大震災の恐れが★☆☆☆☆☆
☆☆☆★とくに千葉県、静岡県、東京都や関東で大震災の恐れが★☆☆☆☆☆

☆☆☆★世界の支配者ユダヤが地震兵器を使うのか★☆☆☆☆☆

友人、知人、親類縁者、あらゆるつながりを駆使して巨大地震がくることを教えて下さい。

四川地震より大きいのが来る可能性があります。
URLリンク(goldenta)<)
ワタスの予言では今月中に関東大地震だす3
スレリンク(eq板)
e-PISCO Part11
スレリンク(eq板)

ほんとに大震災だったら犯人は特権階級全員だってことにwwwwwwww

☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆

カナダの世界的科学者ロザリー・バーテルはハープが地震兵器や脳を損傷させる兵器の疑い
があるので情報を公開するように要請している
URLリンク(www.youtube.com)


710:132人目の素数さん
09/09/24 08:35:01
不等式log_[x](3x^2-10x+7)≧2を満たす実数x(0<x<1)に対して、
x^2-2ax≧1が成り立つaの範囲を求めよ。

※log_[x](…)は底がxということです。


711:132人目の素数さん
09/09/24 08:37:39
任意の実数xか有る実数xに対してかハッキリしてくれ

712:710
09/09/24 08:50:18
【訂正】
不等式log_[x](3x^2-10x+7)≧2を満たす全ての実数x(0<x<1)に対して、
x^2-2ax≧1が成り立つaの範囲を求めよ。


713:うんこ
09/09/24 12:52:27
>>712 かなり数が汚くなるなあ
一行目変換で 2x^2-10x+7≦0。よって(5-√(11))/2≦x<1。
f(x)=x^2-2ax-1としたとき、f(1)=-2a これが非負なのでa≦0.
よってf(x)の軸は負か0にあり、f( (5-√(11))/2 )≧0より- (9√(11)-25)/28≧a となる


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4069日前に更新/256 KB
担当:undef