★東大入試作問者になったつもりのスレ★ 第十七問 at MATH
[2ch|▼Menu]
480:132人目の素数さん
09/09/10 12:00:00
>>469

最初だけ。

f(x)=x^5+x^4+ax^3+bx^2+cx+d とおくと、グラフより、f(x)=0は少なくとも1つの実数解を持つのでその実数解をpとおく。

f(p)=p^5+p^4+ap^3+bp^2+cp+d=0により、d = - ( p^5+p^4+ap^3+bp^2+cp )
これを、f(x)=0に代入すると、
x^5+x^4+ax^3+bx^2+cx - ( p^5+p^4+ap^3+bp^2+cp ) =0
変形すると、
(x^5-p^5) + (x^4-p^4) +a(x^3-p^3) +b(x^2-p^2) +c(x-p)=0
さらに変形。
//======================
(x-p) *
{
    (x^4 + p * x^3 + p^2 * x^2 + p^3 * x + p^4) +
    (x^3 + p * x^2 + p^2 * x + p^3) +
a * (x^2 + p*x + p^2) +
b * (x + p) +
    c
}
 = 0

よって、g(x) =
    (x^4 + p * x^3 + p^2 * x^2 + p^3 * x + p^4) +
    (x^3 + p * x^2 + p^2 * x + p^3) +
a * (x^2 + p*x + p^2) +
b * (x + p) +
    c
とおくと、g(x) = 0 が少なくとも1つ虚数解をもつことをしめせばいい。・・・
ってやってみたんだけど、無意味?



次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4077日前に更新/256 KB
担当:undef