★東大入試作問者にな ..
175:132人目の素数さん
09/07/18 18:07:09
ここは馬鹿であることを遠慮なく告白するスレなのか?
176:べ
09/07/18 18:41:07
>>173
それを利用すればできるじゃね?
まぁ、また気が向いたら。その頃には解かれてるかもだけど。
>>175
それは君だけだろう
177:べ
09/07/18 18:47:20
>>713
まず、上は2以上なんだからc=1は間違い。
下は、一致しないぞーい。
やっぱ利用できそうにないか…
178:132人目の素数さん
09/07/18 19:46:34
>>177
11^3 = 12*111 - 1
179:べ
09/07/19 00:14:00
あ、違うw
12の倍数じゃなくて、12*2^nだった…。
111は2^nじゃないと…
合ってる式なんだしそりゃ解けんわな…。
これなら解けそうだな…気力がある時にやってみる。
180:132人目の素数さん
09/07/19 00:23:29
a=2のときは11=b^c となって、これを満たすb,cは無い。
a≧3のときは、mod 8で考えて−1≡b^c となるから、もし
c=2mだとするとb^c≡0,1,4 となり(∵b^2≡0,1,4 (mod 8)しか起こりえない)、
−1≡b^c は起こりえない。
よってc=2m+1 (m≧1)ということになる。bが偶数だとすると
b^c≡0となってしまうので、bは奇数となる。最初の式に戻って
3*2^a=1+b^c=(b+1)(b^{2m}−b^{2m−1}+…+1) となるが、
bは奇数だから(b^{2m}−b^{2m−1}+…+1)も奇数であり、よって
2^a|(b+1) ということになる。よってb+1=2^a,3*2^a を得る。
b+1=3*2^a のときは、3*2^a=1+b^c からbを消去して
3*2^a=1+(3*2^a−1)^c となるが、簡単のためx=3*2^a (≧12)
と置いて、x=1+(x−1)^c≧1+(x−1)^2 よりx^2−3x+2≦0となり、
よって1≦x≦2となる。しかしx≧12だから矛盾。
b+1=2^a のときは、同様に3*2^a=1+b^c からbを消去して
3*2^a=1+(2^a−1)^c となるが、簡単のためx=2^a (≧4)
と置いて3x=1+(x−1)^c≧1+(x−1)^2 よりx^2−5x+2≦0となる。
これを満たす自然数xはx=1,2,3,4しか無いので、x≧4と合わせて
x=4を得る。よってa=2となるが、a=2の場合は既に見た。
181:べ
09/07/19 00:32:14
mod使う事と、bが奇数なのはすぐ分かったが、
1+b^cを展開して解くというのはなかなか…。
182:132人目の素数さん
09/07/19 00:53:19
>>180
b^c+1が3の倍数⇔b+1は3の倍数かつcは奇数
だからb+1=2^mは外せる
183:132人目の素数さん
09/07/19 00:56:55
>>181
この操作は因数分解って言って展開とは逆操作なんだよ
184:べ
09/07/19 01:11:22
>>183
二項展開のような意味で使ったんだが・・
185:べ
09/07/19 01:16:30
まぁ、丁寧な返答ありがとう。
ここには質問者をバカにする連中もいるからな。
186:132人目の素数さん
09/07/19 01:21:06
ニ項展開の展開も普通の展開と同じ意味なんだけど
187:132人目の素数さん
09/07/24 14:14:23
1辺の長さが1の立方体を平面で切るとき、断面図の最大値、最小値を求めよ
188:132人目の素数さん
09/07/24 15:59:08
【炎上】彼氏が通報者の車に醤油かけて仕返しした
スレリンク(kankon板)l50
189:見方によってはかなりインチキ臭い国際大会
09/07/24 16:18:15
>2009年:1位-中国、2位-日本、3位-ロシア、4位-韓国、5位-北朝鮮、6位-アメリカ
>国際数学オリンピックの引率の先生がラジオで言ってたんだけど、問題は前日に配られて、
>それを言語のできる " その国の引率の先生 " が各自翻訳するらしいです。
>だからと言って生徒に、問題や解答が事前に漏れてるとは言ってませんでしたよ。
前からこの辺りが胡散臭いと思っているんだけど、見方によってはかなりインチキ臭い国際大会。
190:記憶馬鹿には絶対解けない数学問題集
09/07/24 16:21:23
4角柱の問題 → URLリンク(www.geocities.jp)
球体から反射された光線が到達する地点 → URLリンク(www.geocities.jp)
反転ゲームの最短回数 → URLリンク(www.geocities.jp)
( 縦横とも2n個の時の一般解も出して頂けると、すごいと思います )
アリの戦争 → URLリンク(www.geocities.jp)
立方体の通路 → URLリンク(www.geocities.jp)
( 頂点から頂点までの通路は、他の通路と交差している交差点があっても直進する )
回転する光の通過速度 → URLリンク(www.geocities.jp)
入れ子になった回転リングの軌跡 → URLリンク(www.geocities.jp)
191:なるべく予備知識無しで解いて欲しい数学難問
09/07/24 16:24:47
問題 : ミサイル曲線
xy平面の原点に地対空ミサイルが設置されている。 時刻t=0に上空(0,h)を敵戦闘機が速さvでx軸に平行に
xの負の向きに一定の速さvで飛行している。 このミサイルは常に目標をめがけて一定の速さVで飛行する。 時刻t=0で発射されたミサイルの
(1) 軌道を表す曲線の方程式を求めなさい。 (2) 戦闘機が撃墜される時間はいくらか。
ただし v<V とする。 戦闘機もミサイルも点と考えてよい。
問題 : 伸びるゴムひも上を移動する虫
1mのゴムひもの左端を固定します。左端に虫をおきスタートと同時に虫がゴム上を5cm/sで歩き、
ゴムひも自体を右端を5cm/sで引き延ばした場合に虫が右端に到達する時間を求めなさい。
問題 : 蛇口から流れ落ちる水流の曲線
水道の蛇口から少量の一定の水を流すと落下につれて水流が細くなってきます。
蛇口の中心から下方へx軸、それと垂直方向にy軸をとった場合、落下水流の形を示す方程式y=f(x)を求めなさい。ただし粘性率=0
S:蛇口の断面積、 v0:蛇口での流速、 g:重力加速度とします。 また水は自然落下するとします。
192:132人目の素数さん
09/07/25 03:21:56
167の解答
3・2^a-1=b^c
についてcを奇数としても一般性を失わない
また左右の偶奇を考えてbは奇数3・2^a=(b+1)(b^(c-1)-…+b^2-b+1)と因数分解され、
(b^(c-1)-…+b^2-b+1)は奇数よりb+1は3・2^a,2^aのどちらかでこの時
b^(c-1)-…+b^2-b+1=3,1
b(b^(c-2)-…+b-1)=2,0
bは3以上で左辺整数だから右辺2は不適。これより
b^(c-2)-…+b-1=0だけだが
b(b^(c-3)-…+1)=1を満たすものは上と同様に考えて存在しない //
出典はVIPの数学wiki
193:132人目の素数さん
09/07/25 03:47:02
なんで最後で照れてんだよ
194:132人目の素数さん
09/07/25 12:14:14
>>187
最小値は 0
195:132人目の素数さん
09/07/25 12:53:11
>>187
六角形の時が最大か?
196:132人目の素数さん
09/07/25 13:19:30
>>195
ダウト
197:132人目の素数さん
09/07/25 20:00:00
URLリンク(www.geocities.jp)
【3】高次元の球と立方体の断面の体積
(1)ボールの不等式
n次元単位立方体の断面の体積の最大値について考えてみましょう.
1辺の長さが1の正方形(2次元単位立方体)の切り口は単に線分になるから,
その長さが最大となるのは対角線であって,最大値は√2となる.
対角線とは頂点とその対角にある頂点を結ぶ線分で,正方形の原点を通るものである.
また,(3次元)単位立方体の断面は,
3角形・4角形・5角形・6角形などいろいろな形をとるが,立方体の中心を通り,
辺とその対蹠に位置する辺を含む平面で切ったとき,断面積は最大値√2になる.
2次元・3次元での問題は,
4次元の場合あるいは考察をもっと高次元化していくこともできますが,
n次元単位立方体を中心を通る超平面で切ったとき,その切り口の体積(断面積)Vは,
1≦V≦√2
であることが,ボールによって証明されています(1986年).
ボールの不等式のいいところは,Vが次元によらず,√2で上から評価されている点です.
ボールの不等式は2,3次元でも一般次元でも同じ形で成立しましたが,
こんなことがつい最近まで証明されなかったのは,一般次元における幾何の問題は,
高い次元になると多くの反例が作れるからだと想像されます.
198:132人目の素数さん
09/07/26 01:13:53
>>197
3次元の場合,最小値が1はおかしい
なので何か切り方の条件があるんだろ
199:132人目の素数さん
09/07/26 01:28:17
>n次元単位立方体を中心を通る超平面で切ったとき,その切り口の体積(断面積)Vは,
200:132人目の素数さん
09/07/28 14:35:46
>>197
201:132人目の素数さん
09/08/01 01:01:25
ロイヤルストレートフラッシュができる確率を求めなさい
202:132人目の素数さん
09/08/01 01:35:47
いやです。
203:132人目の素数さん
09/08/01 02:05:09
誰か>>61やってくれよ
悲しくなるよ
204:132人目の素数さん
09/08/01 08:59:44
m,nを正の整数値とする。2^nが3^m - 1を割り切るとき、nの最大値をmであらわせ(そのnが最大値であることを証明せよ)。
例 3^960 - 1 を割り切る 2^n の最大値 → n=8
>理系で数学が得意な高校生が25〜50分で…
私は4〜5時間かかりましたが現役なら25〜50分かと。
205:132人目の素数さん
09/08/01 11:36:19
>>204
解いてて,mの奇偶で分けるだけで意外と楽だなーと思ったが偶の場合がめんどくさく1.5〜2時間ぐらいかかったかなw
ちょっとミスしても得意だったら,50分以内に解けるか...
取り合えず答えだけ
――――――――――――――――――
題意を満たすようなnをn(m)と表記する.
(1) m=1,3 (mod4)
n(m)=1
(2) m=2 (mod4)
n(m)=3
(3) m=0 (mod4)
m=(2^l)・k (k∈Z odd)
と表示したlを用いて
n(m)=l+2
206:132人目の素数さん
09/08/01 12:14:02
>>205
答えは正解です。
やっぱり証明は長くなりましたか?
>>all
素朴な方法で証明できるので挑戦してみてね!
207:132人目の素数さん
09/08/01 12:41:14
>>206
今 清書してるが,A4 2枚には収まるかな...
(3)の場合がちょっとね
ちなみに
3^a-1=(3-1){3^(a-1)+3^(a-2)+…+3+1}
を用いて示した
208:132人目の素数さん
09/08/01 14:09:37
(3)の表現がおかしかった
――――――――――――――
正しくは以下:
(3) m=0 (mod4)
m=(2^2l)・k (l∈N, k∈N odd)
と表示したlを用いて n(m)=2l+2
――――――――――――――
l=0の場合は(1)だし,2kの場合は(2)だから(4^l)kに訂正
kはZ oddでも問題ない(m>0なので)が,一応 正の奇数 なので.
次から解答
209:132人目の素数さん
09/08/01 14:11:25
(1) m=1,3 (mod4)
m=2k-1 ( k∈N ) とおけて,
3^m-1=3^(2k-1)-1=(3-1){3^(2k-2)+3^(2k-3)+…+3+1}
このとき,2つめの括弧内に数が2k-1項,つまり奇数項あることに注意しておく.
続けて 3^m-1=2・{3^(2k-2)+3^(2k-3)+…+3+1}
ここで第2項について,2項ずつ組にすることにより
3^(2k-2)+3^(2k-3)+…+3+1={3^(2k-3)}{(3+1)+{3^(2k-5)}(3+1)+…+3(3+1)+1}
={3^(2k-3)}・4+{3^(2k-5)}・4+…+3・4+1=1 (mod2)
したがって2でのみ割り切れる ∴ n(m)=1
(2) m=2 (mod4)
m=2k ( k∈N odd) とおけて,
3^m-1=3^(2k)-1=(3-1){3^(2k-1)+3^(2k-2)+…+3+1}
このとき,2つめの括弧内に数が2k項,つまり偶数項あることに注意しておく.
続けて
3^m-1=2・{3^(2k-1)+3^(2k-2)+…+3+1}
ここで第2項について,2項ずつ組にすることにより
3^(2k-1)+3^(2k-2)+…+3+1={3^(2k-2)}{(3+1)+{3^(2k-3)}(3+1)+…+(3^2)・(3+1)+3(3+1)+(3+1)}
={3^(2k-2)}・4+{3^(2k-4)}・4+…+3・4+4
=4・[{3^(2k-2)}+{3^(2k-4)}+…+3+1]
∴ 3^m-1=2・4・[{3^(2k-2)}+{3^(2k-4)}+…+3+1]
=(2^3)・[{3^(2k-2)}+{3^(2k-4)}+…+3+1]
そして, 〔2つめの括弧内〕=1 (mod2)
∴ n(m)=3
210:132人目の素数さん
09/08/01 14:12:25
(3) m=0 (mod4)
m={2^(2l)}・k (l∈N, k∈N odd) と表せられる
以下,n(m)=2l+2 であることを帰納法で示す
(i) l=1
m=4kより
3^m-1=3^(4k)-1=(3^(2k)-1){(3^(2k)+1}
3^(2k)-1=(2^3)・(奇数) (∵ (2) )
3^(2k)+1={3^(2k)-1}+2=(2^3)・(奇数)+2=2{(2^2)・(奇数)+1}
∴ 3^m-1={(2^3)・(奇数)}×2{(2^2)・(奇数)+1}
=(2^4)・(奇数)・{(2^2)・(奇数)+1}
∴ n(m)=4
(ii) 一般のl, l+1のとき
m={2^(2l)}・k (l∈N, k∈N odd) と表示出来,過程よりn(m)=2l+2
l+1のときは, 2m={2^(2l+2)}k で
3^2m-1=(3^m-1)(3^m+1)
3^m-1=2^(2l+2)(奇数)
3^m+1=(3^m-1)+2
=(3-1){3^(m-1)+3^(m-2)+…+3+1}+2=2・[{3^(m-1)+3^(m-2)+…+3+1}+1]
同様に2項ずつ組にして
3^m+1=2・[{3^(m-2)}(3+1)+{3^(m-3)}(3+1)+…+(3^2)・(3+1)+3(3+1)+1+1]
=(2^2)・(奇数)
3^2m-1=2^(2l+2)(奇数)・(2^2)・(奇数)={2^(2l+4)}・(奇数
∴ n(m)=2l+4=2(l+1)+2
よって示された□
211:132人目の素数さん
09/08/01 16:00:02
>>208
>>205の表現が正解だと思います。
>>208だと、例えばm=8の時、(l、k)を上手く設定できないことになります。
ついでに言うと、(2)と(3)は一緒にしてOKだと思います。
その方が帰納法も楽になるし。
212:132人目の素数さん
09/08/01 16:17:48
S[k]=Σ[i=0、k-1]3^i
L(p)=(2^Lがpを割りきるような最大のL)
とする。
以下証明の準備
@L(p*q)=L(p)+L(q)Apが偶数の時
3^p +1=9^(p/2) +1
≡2(mod8)
∴L(3^p +1)=1
Bpが奇数の時
3^p +1=9^{(p-1)/2}*3 +1
≡4(mod8)
∴L(3^p +1)=2
で、こっからが本題。
S[2k]=S[k](3^k +1)
より
L(S[2k])=L(S[k])+L(3^k +1)
∴L(S[2k])=L(S[k])+1(kが偶数)
L(S[2k])=L(S[k])+2(kが奇数)
従ってn=2^l*p(pは奇数、l≧1)の時
L(S[n])=l+1+L(S[p])
S[p]=Σ[i=0、p-1]3^i
は、奇数個(p個)の奇数(各3^i)の和なので、奇数
∴L(S[p])=0
以上より
L(S[n])=0(nが奇数)
L(S[n])=l+1
∴L(3^m -1)=L(2)+L(S[m])
=1(mが奇数)
=l+2(mが偶数)
213:132人目の素数さん
09/08/01 16:22:00
>>212は、字数の都合で幾つかはしょったり、
書くの忘れてるところがあったり、
改行してなかったりで見にくいと思うけど、こんな感じでどうでしょう。
214:204
09/08/01 17:03:56
nを2より大きな整数、pを奇数としたときp=1mod.2^nを満たすnの最大値をf(p)=nとすると
@f(p^2)=n+1,A奇数qにおいてf(p^q)=nとなることから3^2=1 mod.2^3から出発して帰納的
にもとまります。
@とAの証明は2^nがp-1を割り切る最大値だからp=r*2^n+1 (rは奇数)と置いて
@ p^2 = (r*2^n+1)^2 = 1 は mod.2^(n+1) で成立 mod.2^(n+2) で不成立
A p^q = (r*2^n+1)^q = 1 は mod.2^n で成立 mod.2^(n+1) で不成立
※それぞれ二項係数展開して各項を2^n〜2^(n+2)で割ればわかります。
mが奇数の場合、3=-1 mod.2^2 → 3^m=(-1)^2 mod.2^2 となって2^2以上で割り切れないため、
2^1が最大。m=奇数 → n=1
mが2の場合、3^2=1 mod.2^3 は明らかで@とAより帰納的に3^(q*2^d)=1 mod 2^(d+2)となり
m=q*2^d → n=d+2
でつ。。。
215:205
09/08/01 17:21:16
おおーすっきり
解答してる最中に段々いろいろ思い出したw
>>205で
>偶の場合がめんどくさく
と書いたが,どうも勝手に勘違いしてめんどくさがってたようでw
>>209-210でなぜ4の倍数に拘ったかはよく思い出せんが
2^16-1=(2^8-1)(2^8+1)=(2^8-1){(2^8-1)+2}
といった関係をみて,まず偶数は別ということで,その後なんか思いついたんだろう
>>211
m=8が入らないことに気付けないとは我ながら...
さらにmodの扱いも酷い.まあよくこの手の問題でミスしてたから恐る恐る使ってしまったw
216:132人目の素数さん
09/08/01 22:35:18
球面(x+7)^2+(y+9)^2+(z+7)^2=9がある。中心軸がA(3,-2,-1)B(-9,0,3)を通る直線に含まれる直円錐を球が円錐に含まれるようにとる。このとき円錐の表面積の最小値を求めよ。
217:132人目の素数さん
09/08/02 23:06:15
実数x≧0 に対して、数列{x_n}を以下で定めます。
x_1=x
x_(n+1)=(x_n)^x
極限lim[n→∞]x_nを求めてください。
218:132人目の素数さん
09/08/02 23:08:22
求めました(^_^)V
219:132人目の素数さん
09/08/02 23:39:31
>>217
logx_n=y_nとおくとy_1=logx
y_(n+1)=x*y_n
よりy_n=x^(n-1)*logx
・
0<x<1のときlim[n→∞]y_n=0
・x=1のときlim[n→∞]y_n=0
・x>1のとき
logx>0なのでlog[n→∞]y_n=∞
以上より
・0<x≦1のとき
lim[n→∞]x_n=1
・1<xのとき
lim[n→∞]x_n=∞
・また、x=0のとき
lim[n→∞]x_nはx_2以降が定義されない
すげえつまんねーけど問題これであってる?
220:132人目の素数さん
09/08/02 23:49:55
x_1=x
x_(n+1)=x^(x_n)
ならもう少し興味深かったかもしれん
いずれにしてもxの範囲から0は外さないと駄目だろ
221:132人目の素数さん
09/08/04 15:07:27
2cosα+3cosβ+4cos(α+β)の最小値を求めよ。
ただし0≦α+β≦2πとする
なかなか難問だと思いますが・・・
222:132人目の素数さん
09/08/04 15:37:24
864π
223:132人目の素数さん
09/08/04 22:15:31
>>221
3つのベクトルa↑,b↑,c↑を次のようにとる
・|a↑|=a、|b↑|=b、|c↑|=c、ただしa,b,cは正でab=1,bc=3/2,ca=2
・a↑とb↑のなす角はα、b↑とc↑のなす角はβ
このとき2cosα+3cosβ+4cos(α+β)=2(a↑・b↑+b↑・c↑+c↑・a↑)
=|a↑+b↑+c↑|-(a^2+b^2+c^2)
またa=2√3/3,b=√3/2,c=√3
a↑,b↑,c↑は自由に回転でき、c<a+bなので|a↑+b↑+c↑|=0となるように
a↑,b↑,c↑をとることができる
以上から求める最小値は0-(2√3/3)^2-(√3/2)^2-(√3)^2=-61/12
224:223
09/08/04 22:31:15
>a↑,b↑,c↑は自由に回転でき、c<a+bなので|a↑+b↑+c↑|=0となるように
>a↑,b↑,c↑をとることができる
を具体的に補足しておくと
α=11/24のとき|a↑+b↑|=c↑となるのでc↑=-(a↑+b↑)となるようにとれば
|a↑+b↑+c↑|=0
225:223
09/08/04 22:41:55
なんかところどころおかしいな
>>223 5行目
× =|a↑+b↑+c↑|-(a^2+b^2+c^2)
○ =|a↑+b↑+c↑|^2-(a^2+b^2+c^2)
>>224
× α=11/24のとき|a↑+b↑|=c↑
○ cosα=11/24のとき|a↑+b↑|=|c↑|
何度もすまん
226:132人目の素数さん
09/08/05 00:06:04
原点をOとするxy平面上の格子点A(0)、A(1)、A(2)、……、A(n)、…を、次の条件を満たす格子点とする.
A(0)=O |A(n-1)A(n)↑|=n A(n)A(n+1)↑・A(n-1)A(n)↑=0
(1)O=A(m)となりうるような自然数mをすべて求めよ.
(2)x軸上のある格子点Pに対して、P=A(N)となりうるような自然数Nが存在することを証明せよ.
(3)A(n)について、どのようなnについても一致しないようなxy平面上の格子点をすべて求めよ.
227:132人目の素数さん
09/08/05 00:23:18
なんか問題文が変じゃない?
(2)は「ある」じゃなくて「任意の」ではないの?
(3)は「どのようなnについてもA(n)と一致しないようなxy平面上の格子点をすべて求めよ. 」と言いたいのかな。
228:132人目の素数さん
09/08/05 00:25:40
>>227
すんません。その通りです。アホでごめんなさい
229:132人目の素数さん
09/08/05 01:59:26
>>222
なにかと思えば>>216の答えだったんだな 、今やってわかった
要所は全て整数になるけどまあめんどくさかった
230:216
09/08/05 09:34:41
>>222,229
正解おめ。時間無制限でもそこそこきつい。30分程度で解ければ大したもんだ。
231:221
09/08/05 11:01:32
>>223 正解です
試験内だと加法定理とか和積とかでガッツリやってはまっていく人が多いかな?
232:132人目の素数さん
09/08/05 12:44:32
>>231
試験場では何も考えず微分する人が多いと予想
>>226
長くなりそうなので分割
以下、合同式はすべてmod 8であるとする。
p,qをそれぞれmを超えない最大の奇数、偶数として、
A(m)の座標は(±1±3±5±…±p,±2±4±6…±q) (複合任意),
もしくは上のx,y座標を入れ替えたものとして表される。
(1)±1±3±5±…±pについて、符号が正のものの和と負のものの和が
一致するので、1+3+5+…+pは偶数であり、p≡3,7
±1±3=0とはならず、1-3-5+7=0,1+3+5-7+9-11=0
(2n+1)-(2n+3)-(2n+5)+(2n+7)=0から、帰納的にp≧7なら
±1±3±5±…±p=0となるように符号を定めることができる。
±2±4±6±…±qについても同様に、q≡0,6
p≡3,7よりm≡0,7、すなわち
m=8k,8k-1(kは正の整数)
233:232
09/08/05 12:54:06
>>232
少し補足
座標が上の形で表されることについて
A(n-1)A(n)↑≠0↑から、A(n-1)A(n)↑⊥A(n)A(n+1)↑
A(0)A(1)=1から、A(1)として考えられるのは(±1,0),(0,±1)
よってA(n-1)A(n)はx軸,y軸と交互に平行となる。
各々のベクトルの向きを考えれば座標が±1±…±pのようになる
±2±4±6±…±qについて
0となる必要十分条件が、2でくくった後の和が
偶数であることが上と同様に示される
(2)(±1±3±5±…±p,±2±4±6±…±q)において、
y座標を0にできるのはq≡0,6であるから、
p≡1,5,7
このとき、うまくp,および符号を定めればx座標を任意の整数値に
することができることを示せばよい。
p≡1の場合
p=1のとき、1,-1を作ることができる。
-(2n+1)+(2n+3)-(2n+5)+(2n+7)=4から、pを十分大きくとれば、
すべての奇数値をとることができる。
p≡7の場合
1-3-5+7=0,1+3+5-7=2から同様にすべての偶数値をとることができる
234:232
09/08/05 13:06:07
(3)x,y座標の少なくとも一方は偶数であるから、
(2s+1,2t+1) (s,tは整数)という点が
A(n)と一致することはない。
これ以外の点がすべてA(n)と一致しうることを示そう。
p≡1のとき、±1±3±5±…±pは任意の奇数値をとる。
このときq≡0,2である。
±2±4±6±…±qが任意の偶数値をとることを示す。
q≡0のとき
2-4-6+8=0,-2+4-6+8=4から、4の倍数の値全体をとる。
q≡2のとき、2,-2を作ることができ、4の倍数でない偶数全体をとる。
p≡7のとき、±1±3±5±…±pは任意の偶数値をとる。
また、p≡3のときも任意の偶数値をとることが示される。
p≡7,q≡0として±2±4±6±…±qは任意の4の倍数をとり、
p≡3,q≡2として任意の、4の倍数でない偶数値をとる。
x座標、y座標の入れ替えを考えて、
少なくとも一方が偶数である格子点はA(n)と一致しうることが示された。
235:132人目の素数さん
09/08/05 13:29:30
>>221
条件が無意味
236:132人目の素数さん
09/08/05 14:17:09
n個の実数の平均の値は常にn個の実数の最小以上最大以下であることを示せ。
ただし、平均の値とはn個の実数a_i(i=1,,n)についてf(a_1,…,a_n)=f(x,…,x)を満たす実数xのことを指し、
任意のa_1〜a_nの値についてそれらをどのように入れ替えてもxはただひとつの同じ値をとるものとする。
また、fは連続であり、定義域はどの変数に対しても全ての実数である。@v
237:132人目の素数さん
09/08/05 14:39:49
>>232~234
お見事です!
238:132人目の素数さん
09/08/05 17:12:36
nが4より大きい自然数のとき tan(π/n) は無理数である事を示せ。
239:132人目の素数さん
09/08/05 23:35:12
>>221 cos(α+β)=cos(2πー(α+β))に気づいたらベクトルを思いつくと思ってそのヒントと
して書いたつもりですが、確かに無意味ですね
240:132人目の素数さん
09/08/05 23:35:46
>>238
三角関数の無理数性に関する問題は定期的に出てくるね。
その手の問題はここにまとめられてるよ。
URLリンク(blog.livedoor.jp)
241:132人目の素数さん
09/08/05 23:56:37
>>231
普通の受験生の発想でもいけるんじゃないかな。
三角関数の合成により、
与式=2√(5+4cos(β))cos(α+γ)+3cos(β)≧-2√(5+4cos(β))+3cos(β)が出て
[ここに、cos(γ)=(2+4cos(β)/(2√(5+4cos(β)))、sin(γ)=4sin(β)/(2√(5+4cos(β)))]
A=-2√(5+4cos(β))+3cos(β)とおけば
dA/dβ=sin(β)(-3+4/√(5+4cos(β)))。
ちょっと符号変化を調べるけど、後の括弧の中が0になるβで
Aは最小値 -61/12をとることが分かる。
242:132人目の素数さん
09/08/06 00:31:06
>>240
見たけど間接的な証明だね。
tan の場合は直接的な証明は無いものか。
243:132人目の素数さん
09/08/06 01:05:19
>>241
でも>>223の解法は、これいただき、使わせてもらおって感じだ
技巧に走っているわけでもないし使えそう
244:132人目の素数さん
09/08/06 01:25:03
>>241 合成でもできましたか
問題を作ったときはベクトルでの方法しか頭になくて他の方法を試してませんでした
もう少し複雑にする必要がありますかね・・・
245:132人目の素数さん
09/08/06 02:12:47
>>244
三角関数の最小問題である以上三角関数の微分でできないようにはできないだろ、多分
良問だしいい解法だと思ったがそれ以上の作為を入れると多分しょうもない問題になる
246:132人目の素数さん
09/08/06 02:24:35
>>238
tan(π/n)が有理数であるとする。
nが奇素数pを素因数に持つとき、p=2l+1とすれば1≦k≦lなる整数kで
tan(kπ/p)は全て有理数となるが
Π[k=1_l]tan(kπ/p)=√pより矛盾。
n=2^m (m≧2)とすると、1≦j≦m-1なる整数jで
cos(π/2^j)が全て有理数となるが、cos(π/4)が無理数なので
条件にあう可能性のあるnは4のみ。
247:132人目の素数さん
09/08/06 12:17:07
>>246
Π[k=1_l]tan(kπ/p)=√p
の部分はどうやったんですか?
解と係数の関係か何かですか?
248:132人目の素数さん
09/08/06 14:18:32
実数全体で定義された関数 f(x) が,各k (1≦k≦n) に対して
lim[x→k]f(x)/(x-k)=1
を満たすとき,方程式 f(x)=0 は各開区間 (k,k+1) (1≦k≦n-1)
で少なくとも1つの実数解をもつことを示せ.
ただし n は与えれれた正の整数とする.
249:248
09/08/06 14:19:22
× 実数全体で定義された関数 f(x)
○ 実数全体で定義された連続関数 f(x)
250:132人目の素数さん
09/08/06 15:35:58
kってなんだよ?実数か?
251:132人目の素数さん
09/08/06 17:10:25
自然数だろjk
252:132人目の素数さん
09/08/06 17:28:51
>>248
lim[x→k-0]f(x)/(x-k)=m[x→k+0]f(x)/(x-k)=1
lim[x→k+1-0]f(x)/(x-k-1)=m[x→k+1+0]f(x)/(x-1)=1
より
f(k+α)>0,f(k+1-α)<0 (ただしαは絶対値の極めて小さい正の数)
→中間値の定理より命題は成り立つ
なんか論証甘いか?
253:132人目の素数さん
09/08/06 17:33:09
甘すぎ
254:132人目の素数さん
09/08/06 17:43:50
>>252で十分なくらいつまらん問題ではある
255:132人目の素数さん
09/08/06 18:12:26
>>252の方針で厳密にやるとε-δ論法になってしまい、範囲外。
高校の範囲内で厳密に納得できる形でお願いします。
256:132人目の素数さん
09/08/06 21:08:49
>>248が問題の全体だとすると各kなんてやる意味ないな
257:132人目の素数さん
09/08/06 23:36:24
>>248
f(x)は連続関数なので中間値の定理より開区間(k,k+1)にf(x)=0の解が存在しないならばこの区間で常に正または常に負
常に正のとき
この区間でf(x)/(x-k-1)<0となるのでlim[x→k+1]f(x)/(x-k-1)=1の条件に合わない
常に負のとき
この区間でf(x)/(x-k)<0となるのでlim[x→k]f(x)/(x-k)=1の条件に合わない
よってf(x)=0は開区間(k,k+1)に少なくとも1つの解を持つ
258:132人目の素数さん
09/08/07 12:08:31
多分>>248は一生懸命考えた解答があるんだろう
しかし残念ながら問題がしょうもない
259:132人目の素数さん
09/08/07 16:32:19
と一生懸命考えた回答をこけにされた>>252が必死こいてます
260:132人目の素数さん
09/08/09 00:32:12
>>259
なんでわざわざ
>各k (1≦k≦n) に対して
なんてしてるの?
261:132人目の素数さん
09/08/09 23:55:23
一辺の長さが1である正八面体の内部に存在する正四面体の体積の最大値を求めよ.
262:132人目の素数さん
09/08/10 00:09:30
16√2/27な気がする
263:132人目の素数さん
09/08/10 03:31:27
nは自然数とする
Σ[n=1,∞]|sin(n!)゚|
とΣ[n=1,∞]|1-cos(n!)゜|
の大小を比較せよ
264:132人目の素数さん
09/08/10 08:32:02
>>263
n≧6でn!は360の倍数なのでsin(n!)゜=1-cos(n!)゜=0
だからn=1,2,3,4,5だけ考えたらいいだけだな
出かけるから細かく考える時間がないが後者の方が大きいと思う
265:132人目の素数さん
09/08/10 11:39:47
ひろいもの
1辺の長さが1の正四面体O-ABCがある.この正四面体の辺上を蟻が秒速1で移動し続ける.蟻は分岐点である頂点に辿り着くと,
辿って来たばかりの辺を除いて2つの方向から等確率で1つの方向を選択し,止まる事なく移動し続ける.辺上で進行方向を変える事はない.
頂点Oを出発したn秒後(n=3,4,…)に蟻が頂点Oにいる確率P[n]を求めよ.
266:132人目の素数さん
09/08/10 19:36:25
>>265
{P(n)}がn≧3で定義される理由がわからんが
P(0)から定義されるとして
P(0)=1,P(1)=0
P(n+2)={1-P(n+1)-P(n)}/2
になるのかな?
この漸化式から一般項求まる?
267:132人目の素数さん
09/08/10 21:25:41
\int^{1}_{-1} x/(2x+4) dx > -0.1を証明せよ。
268:132人目の素数さん
09/08/11 01:15:59
!
269:132人目の素数さん
09/08/11 04:30:12
どうせなら\frac あるいは \dfracで書けばよかったのに
270:267
09/08/11 08:12:03
追加: e=2.718...であることは証明なしに用いてもよい。
271:132人目の素数さん
09/08/11 19:56:18
>>265
(A→O) +(B→O) + (C→O) = P_n,
(O→A) + (O→B) + (O→C) = X_n,
(A⇔B) + (B⇔C) + (C⇔A) = Y_n,
とおくと、
P_(n+1) = (1/2)Y_n,
X_(n+1) = P_n,
Y_(n+1) = X_n + (1/2)Y_n,
P_n + X_n + Y_n = 1,
これより XとYを消して
P_(n+2) = {1 - P_(n+1) - P_n}/2,
272:132人目の素数さん
09/08/11 19:57:59
>>266
特性多項式 t^2 + (1/2)t + (1/2) = (t + 1/4)^2 + 7/16 の根 は -(1/√2)exp(±iα),
P(n) = 1/4 + (-1/√2)^n・q(n),
とおくと、
q_(n+2) = 2cosα・q_(n+1) - q_n, cosα = 1/√8,
q_n は cos(nα)、sin(nα) の一次式と予測される。
q_0 = 3/4,
q_1 = 1/√8,
q_2 = -1/2,
q_3 = -1/√2,
q_4 = 0,
よって
q_n = (2/√7)sin((n-4)α), sinα = √(7/8),
Yahoo!掲示板 - 科学 - 数学 - 数学・算数質問コーナー(制限版) [ No.034-035]
273:272
09/08/11 20:03:34
(修正)
特性多項式 t^2 + (1/2)t + (1/2) = (t + 1/4)^2 + 7/16 の根 は
{-1 ±(√7)i}/4 = -(1/√2)exp(±iα), cosα = 1/√8,
274:132人目の素数さん
09/08/12 03:25:22
>>263だけど
Σ[n=1,5](sin(n!)+cos(n!))
>5√2*sin48
を証明せよ
に改題します(>>263より大雑把な)
ちなみに>>264の予想は正解です
275:132人目の素数さん
09/08/12 04:54:00
>>267,270
I = ∫[-1,1] x/(2x+4) dx = ∫[-1,1] {(1/2) - 1/(x+2)}dx
= [(x/2) - log(x+2)](x=-1,1)
= 1 - log(3),
x>0 のとき e^x > 1 + x + (1/2)x^2 より
e^0.1 > 1 + 0.1 + 0.005 = 1.105
e^1.1 = e*e^0.1 > 2.718*1.105 > 3.003
1.1 > log(3)
I > -0.1
276:267
09/08/12 06:56:13
>>275
正解です。東大の1999年理系6番の類題でした。
277:132人目の素数さん
09/08/12 19:08:56
>>263
前者 = 1.4296424132676768103829574760386・・・
後者 = 1.5926941248136387984119254841763・・・
差 = 0.1630517115459619880289680081377・・・
>> 274
左辺 = 4.8369482884540380119710319918623・・・
右辺 = 5.2548274549875885325330534402426・・・
278:132人目の素数さん
09/08/12 23:40:13
任意の実数xについて
sin(cosx)≦sin(cos(sinx))≦cos(sinx)を示せv
279:132人目の素数さん
09/08/13 01:53:03
sin(cosx)≦sin(cos(sinx))
⇔cosx≦cos(sinx) (∵y=sinxは[-1, 1]で増加関数)
両辺倶に偶関数で, 2πを周期に持ち, 更に[π/2, 3π/2]で
cosx≦0≦cos(sinx)から[0,π/2]で考えればよい。
このときy=cosxは減少関数とからsinx≦x
∴cosx≦cos(sinx)
sin(cos(sinx))≦cos(sinx)
⇔t=cos(sinx), sint≦t
0≦t≦1(∵-1≦sinx≦1)なのでsint≦tは成立
280:132人目の素数さん
09/08/13 14:11:51
>>277
数値計算して何になる?入試で電卓は使えないぞ
>>263
n=1,2,3,4,5でsin(n!)゚>0,1-cos(n!)゚>0より
Σ[n=1,∞]|sin(n!)゚| <Σ[n=1,∞]|1-cos(n!)゜|
⇔Σ[n=1,5](sin(n!)゚+cos(n!)゚)<5
y=sinx゚,y=cosx゚は(0,90)で上に凸から、ジェンセンの不等式より
(sin1゚+sin2゚+sin6゚+sin24゚)/4<sin(33/4)゚
(cos1゚+cos2゚+cos6゚+cos24゚)/4<cos(33/4)゚
Σ[n=1,5](sin(n!)゚+cos(n!)゚)
<4sin(33/4)゚+4cos(33/4)゚+sin120゚+cos120゚
=4√(1+sin(33/2))+√3/2-1/2 (∵(sinx+cosx)^2=1+2sinxcosx=1+sin2x)
<4√(1+sin18゚)+√3/2-1/2
=4√(1+(√5-1)/4)+√3/2-1/2
=√10+√2+√3/2-1/2<3.17+1.42+1.74/2-1/2=4.96<5
>>274
Σ[n=1,5](sin(n!)+cos(n!))<5√2*sin48だな
sin48゚>sin45゚=1/√2より明らか
sin48゚がどこから出てきたのか教えてほしいな。興味がある
281:狂介
09/08/13 22:24:20
>>280
274へのレスについてだけど、どういう意味?
sin(i)+cos(i)≦1とはならないけど
282:132人目の素数さん
09/08/13 22:37:52
>>281
せめて280を全部読んでからレスしようよ・・・
283:132人目の素数さん
09/08/14 02:29:05
>>279>>280
正解です
向きの訂正ありがとうございます
sin48は
合成して
√2(sin46+sin47+sin51+sin69+sin15)<5√2sin48を示すのは
左辺<√2(3sin48+2sin42)(ジェンセン)
=√2(3sin48+2cos48)
=√2sin48(3+2/tan48)
<5√2sin48(∵tan48>1)
出題後にこっちの方が偶然まとまってくれたのでこっちも出してみました
284:132人目の素数さん
09/08/14 03:04:00
f1_(x)=f(x)=sin(cosx)
fn+1_(x)=f(fn_(x))とおく。
この時lim(n→∞)f_n((sinx))は定数関数であることを示せ
明日東大模試だし、早めに寝るか…
285:狂介
09/08/14 08:07:26
>>282
すいませんでした
>>284
f_n(x)は[sin(-1),sin(1)]にある。
g(x)=sin(cos(x))とすると、|g '(x)|≦r<1 ([sin(-1),sin(1)]について)
平均値の定理を使った定石より、
|f_n(x)-a|≦r|f_(n-1)(x)-a|≦…≦r^(n-1)|f_1(x)-a|
(a=g(a))
よってlim(n→∞)f_n(x)=a
286:280
09/08/14 23:42:15
>>283
すごくきれいに48゚が出てきたな、面白い。ただ、合成をつかって
√2(3sin48+2cos48)=√26sin(48+α)≦√26
とした方が強い評価ができていいと思う
a_k=p/(k^2+1)+q/(k^2+2)+r/(k^2+3)+s/(k^2+4)とおくと、
k=1,2,3,4でa_k=1/k^2となった。このとき、a_5を求めよ。
287:132人目の素数さん
09/08/15 09:03:10
↑パクリ問かよ
288:132人目の素数さん
09/08/15 11:13:41
>>286 下
通分すると、分母は (k^2 +1)(k^2 +2)(k^2 +3)(k^2 +4), 分子は k^2 の3次式だから、
a_k = {(-1/3)(k^2 -4)(k^2 -9)(k^2 -16)a_1 + (28/3)(k^2 -1)(k^2 -9)(k^2 -16)a_2 + (-429/7)(k^2 -1)(k^2 -4)(k^2 -16)a_3 + (646/7)(k^2 -1)(k^2 -4)(k^2 -9)a_4}/{(k^2 +1)(k^2 +2)(k^2 +3)(k^2 +4)}
これに a_1 = 1, a_2 = 1/4, a_3 = 1/9, a_4 = 1/16 を代入する。
a_5 = 15/377,
289:132人目の素数さん
09/08/15 18:01:28
次の性質を満たす正の実数 p がある.
任意の正の整数 n に対して,
a_n=(p−1−1/1!−1/2!−...−1/n!)・(n+1)!
で定まる数列 {a_n} について 0<a_n<3 が成り立つ.
このとき,任意の 0 でない有理数 q に対して,
p^q は無理数となる事を示せ.
ただし,題意を満たす p,{a_n} の存在は既知としてよい.
290:132人目の素数さん
09/08/18 05:51:03
筑波大>>東大が証明されました!
筑波大が世界記録を更新=2兆5000億けた 東大超え
スレリンク(news板)
291:132人目の素数さん
09/08/19 00:39:38
>>284
分からない
292:132人目の素数さん
09/08/19 17:11:16
>>291
>>286
293:132人目の素数さん
09/08/19 17:29:03
>>289
q=1 ならできた。
294:284とか
09/08/19 19:06:00
fn_(x)の最大値をM_n最小値をm_nとすると
sincosx(m_n≦x≦M_n)について
0≦m_n≦M_n≦1に注意して
m_n≦m_(n+1),M_(n+1)≦M_nを示す
M_(n+1)=sincosm_n…@
m_(n+1)=sincosM_n…Aで
M_(n+1)≦M_n
⇔sincosm_n≦sincosm_(n-1)
⇔m_n≧m_(n-1)
⇔sincosM_(n-1)≧sincosM_(n-2)
⇔M_(n-1)≦M_(n-2)より
M_1≧M_2≧M_3かつm_1≦m_2≦m_3を示せば十分で
M_1=sin1,M_2=sin1,M_3=sincossincossin1とm_1=0,m_2=sincossin1,m_3=sincossin1であるから示される。これと@,Aより
M_(n+2)<M_nとm_(n+2)>m_nなので
M_nは大きくみて単調減少
m_nは大きくみて単調増加
またm_n≦M_nより十分大きなnに対してm_n=M_nである
以上よりfn(x)は最大値=最小値となり定数関数となる
よってxにsinxを入れてfn(sinx)も定数である
(やや周りくどいですが…)
補足でcos(sin(cos…sinx))=cos(sin(cos…cosx))>sin(cos(sin…sinx))=sin(cos(sin…cosx))です
295:132人目の素数さん
09/08/19 19:07:12
>>289
ギブ
296:132人目の素数さん
09/08/19 21:17:45
>>293
p=e のとき
0 < a_n = 納k=0,∞) (n+1)!/(n+1+k)!
= 納k=0,∞) (n+1)!/[(n+1)!(n+2)^k]
< 納k=0,∞) 1/[(n+2)^k)]
= 1/{1 - 1/(n+2)} = (n+2)/(n+1) ≦ 3/2,
p≠e ならば発散する。
いまeが有理数だと仮定すると e=k/n (k,nは自然数)
n!e は自然数。
a_n/(n+1) も自然数。ところが
0 < a_n/(n+1) < 3/(2(n+1)) < 1
となって矛盾。
∴ eは無理数。
∴ e^(1/m) も無理数。
297:132人目の素数さん
09/08/19 23:14:08
【問】
cos(x)=sin(1/x)を満たすxは無理数であることを示せ
(ただしx≠0)
他のと比べたらかなり簡単
298:132人目の素数さん
09/08/20 05:35:52
>>296
N.G.
それならすぐ回答レスがついたと思われ
ネピアのマクローリン展開なのはすぐに気が付くだろうし。
> p^q は無理数 ← ∴ e^(1/m) も無理数。
仮にpを無理数である√2と仮定するならば
p^2 = 2 よって有利数となる。
よってeが代数的包体でない、すなわち超越数
であることを示さなければならない。
299:132人目の素数さん
09/08/20 07:30:53
>>298
素朴な疑問なんですが、eが超越数なら任意の自然数mについてe^mが無理数に
なるのは分かりますが、逆も成り立つんでしょうか?
300:132人目の素数さん
09/08/20 08:12:45
>>298
これはありなのか?
スレとして
301:132人目の素数さん
09/08/20 09:13:12
e^2が無理数はいけたかも。
302:301
09/08/20 11:12:19
(e^2 が無理数であることの証明)
仮定より,
1+1/1!+1/2!+...+1/n! < p < 1+1/1!+1/2!+...+1/n!+3/(n+1)! ...@
また簡単な微分演算により,
x>0 で 1+x/1!+x^2/2!+...+x^n/n! < e^x
< 1+x/1!+x^2/2!+...+x^n/n!+x^(n+1)・e^x/(n+1)!...A
Aにおいて x=1 とし,@と挟み撃ちより p=e.
Aにおいて x=2 とおくと,
1+2/1!+2^2/2!+...+2^n/n! < e^2
< 1+2/1!+2^2/2!+...+2^n/n!+2^(n+1)・e^2/(n+1)!...B
e^2=k/j (j,k は正の整数) とおけると仮定する.
また m が正の整数のとき (2^m)!=2^(2^m-1)・N(m) (N(m) は正の整数) とかけるので,
Bにおいて n=2^m (m は正の整数) とし,辺々に j・N(m) をかけると,
j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!}<k・N(m)
<j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!}+4j・e^2/(2^m+1)...C
ここで j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!} および k・N(m) は
正の整数で,m を十分大きくすると,0<4j・e^2/(2^m+1)<1 とすることができる.
これはCに矛盾する.
# e^m (m≧3) の証明はできない...
303:132人目の素数さん
09/08/20 11:26:30
>>297
cos(π/2-x)=sin x とか使って、和積の公式+背理法で簡単じゃあるまいか?
304:132人目の素数さん
09/08/20 13:20:50
>>303
実際の入試問題ならこのレベルで十分なのが現実だな。
305:284とか
09/08/21 20:56:18
【問】
xy平面において、(0,-r)から速さvでy=tanθx-r上を動く半径rの円(以下自機)と間隔1で線分の長さ1のx軸上に無限に連なり、速さ1でx軸正方向へ流れるワインダーを考える
この時自機が上手くワインダーを通り抜けることで、自機がワインダーにぶつかる(ワインダーと自機が周を除いて共有点をもつ)ことなくワインダーを通りぬけることができた
vを定数として、この時考えられる最大のrとその時のcosθの値を求めよ
某有名STGやってる時に閃いた問題だけど結構しっかり考えないと解けないと思われ
306:132人目の素数さん
09/08/22 00:04:44
問題文が理解不能
307:132人目の素数さん
09/08/22 00:53:33
ワインダーってなんだよ
308:132人目の素数さん
09/08/22 01:06:08
ワインダーは語義ミスぽいし、改題
【問】
xy平面において
(0,-r)から速さvでy=tanθx-r上を中心が動く半径rの円Cおよびx軸上にあり、長さ1でx軸正方向へ速さ1で動く線分が長さ1の間隔で以下の図のように無限に並んでいる非連続直線Dを考える
…― ― ― ― ―…
この時円Cが上手くDを通り抜けることで、円CがDと内部を共有することなく(ただし、周の共有は許す)(円のy座標)≧rの地点に到達することができたという。
vを定数として、この時考えられる最大のrとその時のcosθの値を求めよ
309:132人目の素数さん
09/08/22 11:27:26
高校生のための質問スレ669に東大の問題を真似た問題を作ってみました。溶けないのですが…w
問題のせるとマルチ指摘されるのでそちらでといてみてください
310:132人目の素数さん
09/08/22 11:36:00
あとこれもどうでしょう。なかなかの良問です
x(1)〜x(n)がそれぞれ1〜nまでの自然数の値を取るとする(n≧2)
この時|x(1)―x(2)|+|x(2)―x(3)|+……+|x(n-1)―x(n)|+|x(n)―x(1)|の最小値を求め、そのような値を取るx(1)〜x(n)の組み合わせの総数を求めよ。
311:132人目の素数さん
09/08/22 12:00:34
>>302
何で e^3 とかになると急に無理数性の証明が難しくなるんでしょうな。
312:132人目の素数さん
09/08/22 12:20:27
>>311
e^2の無理性の本質は、テーラー展開と、eの無理性に帰着できる所、にあるから上手くいく
e^3以降だとテーラー展開の形から良い有理数近似が得られないから上手くいかない
313:132人目の素数さん
09/08/22 13:48:29
最小値は数直線で考えれば2(n-1)だけど組み合わせは結構だるいな…
314:132人目の素数さん
09/08/22 13:52:46
>>310はますのりで見たような気がする。
ま、よくある問題ではあるが。
315:132人目の素数さん
09/08/22 14:35:40
一応これ自作なのですが全く同じなのですか?
あることに気付けばすぐできます
316:132人目の素数さん
09/08/22 14:40:01
連続レスすみません
z=cosx(0≦x≦π/2)
z=Siny(0≦y≦π/2)
y=Sinx(0≦x≦π/2)
でかこまれる共通体積を求めよ。
こちらに載せます。
317:132人目の素数さん
09/08/22 14:48:56
Sinはsinってことでおk?
318:132人目の素数さん
09/08/22 14:50:09
おけです
319:132人目の素数さん
09/08/22 18:58:12
>>316
東大入試作問者になったつもりなら、文章にも気を配ろうよ。
>でかこまれる共通体積
なんて日本語になってないだろ。
320:132人目の素数さん
09/08/22 19:30:00
0.
321:132人目の素数さん
09/08/22 20:00:34
共通体積なんてないよな?
時間返せハゲ
322:132人目の素数さん
09/08/23 08:17:49
場合の数は2^(n-1)かなあ
323:132人目の素数さん
09/08/23 09:06:51
>>322おしいですね
324:かえる
09/08/23 10:25:36
>>310
厳密な証明がうまく書けませんが、
1からnまで上りきってから、nから1まで下るのが最小
最小値は2(nー1)
最小値をとる場合の数は、1のとり方でn通り
2〜n−1の(n−2)個の点について、上りで通るか下りで通るかなので、2^(n−2)通り
よって、n*(2^(n−2))通り
325:かえる
09/08/23 10:32:43
324の上段をもう少し丁寧に書けば、
1とnの間を往復しなければならないので、最小値が2(n−1)未満にはなりえない。
a(k)=kとすれば、実際に2(n−1)をとる。
よって、最小値は2(n−1)
326:132人目の素数さん
09/08/23 11:03:42
正解です
327:132人目の素数さん
09/08/23 13:56:11
>>323
そうか?
むしろ京大より東大だろ。もっとも京大と違って亀田みたいにあからさまな元ヤンはいないが。
官庁の役人なんて社会に出たらやって行けないような奴ばっか。
もっとも奴らが社会に出る時すなわち天下りなわけでそんな社会人一年生が赦されてしまうのが学歴社会日本クオリティ。
328:132人目の素数さん
09/08/23 14:17:23
意味不明
329:132人目の素数さん
09/08/23 17:53:42
出します。
一辺が4の立方体が二つあり、両方の中心をxyz座標における原点に固定する。
これらを自由に回転させるとき、二つの立方体の体積の最大値を求めよ。
ただし最大値の存在があるものとして答えてはいけない。
330:132人目の素数さん
09/08/23 17:57:25
もう一問。以前東大スレでだしたのですが正解者がいなかったので
正12面体があり、ある面をAとおく。Aを床とくっつける。ここで一回の操作で床にくっついた面に続く5面うちのどれかに転がすという操作をする。このとき、n回目にAが床にくっついている確率を求めよ。
331:132人目の素数さん
09/08/23 17:58:55
>>329
二つの立方体の体積の最大値を求めよ。
と言われましても、どんだけ回転させても二つの立方体の体積は変わりませんぜ
332:かえる
09/08/23 19:32:06
>>330
n回目の操作後
Aが床についている確率a(n)
Aの隣の5面のいずれかが床についている確率b(n)
Aから2つ離れた5面のいずれかが床についている確率c(n)
Aから3つ離れた面が床についている確率d(n)
a(n+1)=(1/5)b(n)
b(n+1)=a(n)+(2/5)b(n)+(2/5)c(n)
c(n+1)=(2/5)b(n)+(2/5)c(n)+d(n)
d(n+1)=(1/5)c(n)
333:かえる
09/08/23 19:42:35
>>332の続き
(第1式)+(第2式)と
a(n)+b(n)+c(n)+d(n)=1
a(0)=1,b(0)=c(0)=d(0)=0に注意して、
a(n)+d(n)=(1/6)+(5/6)(-1/5)^n
(第1式)−(第4式)に(第2式)−(第3式)を代入して、
a(n+2)-d(n+2)=(1/5)(a(n)-d(n))
n偶数:a(n)-d(n)=(1/5)^(n/2)
n奇数:a(n)-d(n)=0
334:かえる
09/08/23 19:46:34
>>332の続き
よって、
n偶数:a(n)=(1/12)+(5/12)(-1/5)^n+(1/2)(1/5)^(n/2)
n奇数:a(n)=(1/12)+(5/12)(-1/5)^n
・・・(答)
335:132人目の素数さん
09/08/23 21:06:12
>>308
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4057日前に更新/256 KB
担当:undef