分からない問題はここに書いてね307 at MATH
[2ch|▼Menu]
804:132人目の素数さん
09/05/14 16:27:07
>>803
(-4,11)でなくても k = 1を入れた (11,-30)でもいいし
解ならなんでもいい。

x = 11+15k
y = -30 -41k
は、
x = -4+15k
y = 11-41k
と本質的に同じ。
kを変化させてできる解(x,y)の集合は一致するからね。

a x + b y = c
という方程式の解の1つを(p,q)としたとき
a p + b q = c
a(x-p) + b(y-q) = 0
で、aとbの関係から x-p と y-qが求まるということ。
見つけやすい解を1つだけ見つければ、解を求めるのは容易だということ。
こういうのは線型性と呼ばれる性質で、こういう方程式は線型方程式と呼ばれる。

なんでもいいから1つだけ見つけて、引き算すると、すっきりと求まる方程式。
これは(線型)微分方程式なんかでも用いられる方法。



次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

5001日前に更新/248 KB
担当:undef