高校生のための数学の質問スレPART218
at MATH
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
950:132人目の素数さん 09/02/05 00:10:31 「相異なる2直線をl,mとする。lに関する対象移動をf、mに関する対象移動をgとすると f・g=g・f が成立するのはl,mがどんな位置関係のときか。」 答えはもちろんl,mが垂直のときなんですが、そのことを示すのに、 「ア)l⊥mのとき、f・g(P)=g・f(P)任意の点Pで成り立つことと、 イ)l⊥mでないとき、f・g(P)≠g・f(P)となるPが少なくともひとつあることを示せばよい」 と解答には書いてありました。アは理解できるのですが、イでは不十分ではないかと思っちゃいます。。。 少なくともひとつあることを示しただけでは例えばl,mが垂直でない、ある配置においてf・g=g・fとなる可能性がないことを示したことにはならないと思うんです・・・。 もしこれだけで解答したらl⊥m以外にも答えがあるかも知れないのに検証してない方針だと思うのですが・・・ 皆さんの意見をお待ちしていますm(_ _)m 因みに駿台の直前講習の問題です。 951:132人目の素数さん 09/02/05 00:11:13 >>949 人によって違うかもしれんが俺は赤を何箇所塗るかで9通りに場合わけして考える。 実質5通りだけどね。 どう場合わけするかってことだろうね。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4800日前に更新/229 KB
担当:undef