★東大入試作問者になったつもりのスレ★ 第十三問 at MATH
[2ch|▼Menu]
352:132人目の素数さん
08/02/07 02:34:13
>>302-303

B(n) = 1/{A(n)}^2 とおいて、B(n)→∞ を示す。
 |A(n)| < |A(n-1)| < …… < |A(2)| < |A(1)|≦1, (狭義の単調減少),
ところで
 sin(x) < x -(1/6)x^3 +(1/120)x^5 < x -(19/120)x^3, (x>0)
 sin(x)^2 < x^2 -(19/60)x^4 +(1/30)x^6 < x^2 -(17/60)x^4,
よって A(n)=a とおくと
 B(n+1) - B(n) = 1/{sin(a)^2} -1/a^2
  = {a^2 - sin(a)^2}/{a^2・sin(a)^2}
  > {a^2 - sin(a)^2}/a^4
  > 17/60,
 B(n) > B(1) +(17/60)(n-1) →∞ (n→∞)
∴ A(n) → 0 (n→∞)
でいいかな?


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

5373日前に更新/214 KB
担当:undef