不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
956:132人目の素数さん 09/06/11 23:43:43 x,y,z>0,x^2<y<logzのとき xy^4<z^2 a,b,c,d∈N,r=1-(a/b)-(c/d),a+c≦1982,r>0のとき r>(1/1983)^3 957:132人目の素数さん 09/06/12 04:01:37 a,b,c≧1のとき {a^3-(1/a)^3}+{b^3-(1/b)^3}+{c^3-(1/c)^3}≧3{abc-(1/abc)} a>b>c>0のとき [1/{(a-b)(a-c)√a}]+[1/{(b-c)(b-a)√b}]+[1/{(c-a)(c-b)√c}]>0 958:132人目の素数さん 09/06/12 11:57:35 a_k(k=1,2,3,..n)は正の数 Π[k=1,n]a_k^a_k≧(Π[k=1,n]a_k)^(Σa_k/n)を示せ 959:132人目の素数さん 09/06/13 00:21:06 >>957 上 a+b+c=s, ab+bc+ca=t, abc=u とおくと、 a^3 + b^3 +c^3 -3abc = (a+b+c){(a-b)^2 +(b-c)^2 +(c-a)^2}/2 ≧ 3{(a-b)^2 +(b-c)^2 +(c-a)^2}/2 (← a,b,c≧1) ≧ (1/a + 1/b + 1/c){[(a-b)/ab]^2 + [(b-c)/bc]^2 + [(c-a)/ca]^2}/2 (← 1≧1/a,1/b,1/c) ≧ 1/(a^3) + 1/(b^3) + 1/(c^3) - 3/(abc), >>957 下 (a-c)/{(b-c)(b-a)} = -1/(a-b) - 1/(b-c) より (左辺)*(a-c) = {1/(a-b)}(1/√a - 1/√b) + {1/(b-c)}(1/√c - 1/√b) = - 1/(a√b + b√a) + 1/(c√b + b√c) > 0, (← a>c) >>958 対数を考えれ。チェビシェフより Σ[k=1,n] (a_k)log(a_k) ≧ {Σ[i=1,n] log(a_i)}(Σ[j=1,n] a_j)/n,
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4367日前に更新/307 KB
担当:undef