不等式への招待 第3章
at MATH
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
950:132人目の素数さん 09/06/08 22:59:25 >>949 誰がエレファントなAAを貼れと言った! 951:132人目の素数さん 09/06/09 02:57:13 a[1],…,a[n]>0において (a[1]/a[2])+(a[2]/a[3])+…+(a[n]/a[1]) ≧{(a[1]+a[2])/(a[2]+a[3])}+{(a[2]+a[3])/(a[3]+a[4])}+…+{(a[n]+a[1])/(a[1]+a[2])} f(x)は微分可能かつf'(x)が連続で,f(0)=f(π)=0のとき ∫[0,π](f(x))^2dx≦∫[0,π](f'(x))^2dx a,b,c>0,ab+bc+ca=1において {(1-a^2)/(1+a^2)}+{(1-b^2)/(1+b^2)}+{(1-c^2)/(1+c^2)}≦3/2 952:132人目の素数さん 09/06/09 23:44:18 >>948 地道にやると・・・ ∫ e^x・(sinx)^2 dx = ∫ e^x・{1-cos(2x)}/2 dx = e^x・{(1/2) - (1/10)cos(2x) -(1/5)sin(2x)}, (与式) = (2/5)(e^π - 1) だが、 この後が・・・・ >>951 (下) a^2 + b^2 + c^2 = ab+bc+ca + F_0 ≧ ab+bc+ca, (左辺) = 2/(1+a^2) + 2/(1+b^2) + 2/(1+c^2) -3 ≦ 6/{1 + (a^2 + b^2 + c^2)/3} -3 (← 2/(1+x) は下に凸) ≦ 6/{1 + (ab+bc+ca)/3} -3,
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4363日前に更新/307 KB
担当:undef