不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
90:88 07/06/22 00:25:00 >>89 すげーな、プロの味がするw 91:89 07/06/22 00:39:29 >89 の左側の別解 (左辺) ≧ (2/9)(a^2 +b^2 +c^2){1/(b+c) + 1/(c+a) + 1/(a+b)} (← 同順序積 ≧ 乱順序積) ≧ 2(a^2 +b^2 +c^2) / {(b+c) + (c+a) + (a+b)} (← 相加・調和平均) = (a^2 +b^2 +c^2) / (a+b+c). 92:132人目の素数さん 07/06/24 01:39:02 >87 〔系〕 a,b,c>0 のとき (2/3){a^2/(b+c) +b^2/(c+a) +c^2/(a+b)} ≧ (a^2 +b^2 +c^2)/(a+b+c) ≧ √{(a^2 +b^2 +c^2)/3} ≧ (a+b+c)/3 ≧ (abc)^(1/3). 2. (IMO 1995 Canada) Let a,b,c be positive real numbers such that abc=u. Prove that 1/{a^3・(b+c)} + 1/{b^3・(c+a)} + 1/{c^3・(a+b)} ≧ (3/2)u^(-4/3). (略証) 上式の a→1/a, b→1/b, c→1/c, u→1/u とおく。 93:132人目の素数さん 07/06/25 00:14:52 並べ替えの不等式について質問です。 n!個の式のうち一番大きくなるは正順で、一番小さくなるのが逆順ですが 残りの中間の不等式で大小関係がはっきりつくグループは何個なんでしょうか? n=3 のときは中間の3!−2=4個の式が2個のグループに分けられるみたいですが。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4368日前に更新/307 KB
担当:undef