不等式への招待 第3章
at MATH
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
850:849 09/04/05 19:45:07 ↑は http://www.math.ust.hk/excalibur/v14_n1.pdf のp.3に出てた。orz しかたないので一題・・・ Problem 2. Let a_1 〜 a_5 be real numbers satisfying the following equations: a_1/(1+k^2) + a_2/(2+k^2) + a_3/(3+k^2) + a_4/(4+k^2) + a_5/(5+k^2), for k=1〜5. Find the value of a_1/37 + a_2/38 + a_3/39 + a_4/40 + a_5/41, (Express the value in a single fraction.) 851:132人目の素数さん 09/04/05 19:51:15 >>850 結果だけ並べると・・・ a_1 = 1105/72, a_2 = -2673/40, a_3 = 1862/15, a_4 = -1885/18, a_5 = 1323/40, より b_6 = 187465/(3*37*38*39*41) ≒ 1.00061649483987・・・ / 36, b_7 = 1197/(5*13*17*53) ≒ 1.00150260394436・・・ / 49, b_8 = 85345/(16*13*17*23*67) ≒ 1.00240485551780・・・ / 64, b_9 = 277289/(9*17*41*43*83) ≒ 1.00321917612728・・・ / 81, b_10=12117378/(3*25*7*13*17*101*103) ≒ 1.00391855290609・・・ / 100, b_0 = 13489 / 3600 ≒ 3.74694444444444・・・ ここに b_k = a_1/(1+k^2) + a_2/(2+k^2) + a_3/(3+k^2) + a_4/84+k^2) + a_5/(5+k^2),
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4348日前に更新/307 KB
担当:undef