不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
826:132人目の素数さん 09/03/16 08:40:09 >>811は解けなかっただけだろ 827:132人目の素数さん 09/03/16 09:17:11 件の人はa^3 + b^3 + c^3 - 3abcの因数分解の公式知らんのかね。 つうかこのスレは大学入試問題レベルの簡単な問題を 扱うような感じじゃないと思うけど。 828:132人目の素数さん 09/03/16 09:21:55 少なくともこのスレ的には対称式に対する標準的な処方箋で解ける問題. 因数分解の公式なんて忘れても,基本対称式で書こうとするだけでいい. 829:132人目の素数さん 09/03/16 19:32:17 >>749の正しい問題文は何だろう 830:132人目の素数さん 09/03/16 22:31:37 >>795 G-H ≦ Q-A を示そう。 (A-H) = (A^2 -G^2)/A = (Q^2 -G^2)/(2A) = (Q-G){(Q+G)/(2A)}, (Q-A) - (G-H) = (Q-G) - (A-H) = (Q-G){1-(Q+G)/(2A)} = {(Q-G)/(2A)}{(A-G)-(Q-A)} ・・・・・・ (**) ∴ Q-A は G-H と A-G の間にある(G-H寄り)。 **) 右辺の係数は 0 < (Q-G)/(2A) ≦ (Q+G)/(2A) < 1, よって (3) (Q-A)-(G-H) ≦ (A-G)-(Q-A), 〔問題〕 3変数(x,y,z) のときは (1) のみが成り立つことを示せ。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4370日前に更新/307 KB
担当:undef