不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
667:665 08/11/27 23:57:46 >>665 訂正 f(x) = log(sin(x)) なので、 log(与式) = f(x) + f(1/x) = g(log(x)) + g(-log(x)) ≦ 2g(0) = 2f(1) = log{sin(1)^2}, 668:132人目の素数さん 08/11/28 05:13:49 みなさんは不等式の必須手法みたいなのを何で学びましたか? 669:132人目の素数さん 08/11/28 23:42:33 >>668 おまえには教えてやらねーよ! 670:132人目の素数さん 08/11/29 00:20:54 不等式を制する者は解析を制する。 671:132人目の素数さん 08/11/29 12:07:58 △ABC の辺 a、b、c に対して、次式を示せ 3abc ≧ (b+c-a)a^2 + (c+a-b)b^2 + (a+b-c)c^2 ∧_∧ _ ( ゚∀゚) たぶん、出したことないと思う… |≡(つc□≡| `T ̄∪∪ ̄T ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙ 672:132人目の素数さん 08/11/29 18:50:59 >>664 (k+2)(k+1) = (2k+3)(2k+2)/3 - (k+1)k/3, (k+2)(k+1)*C[2k+1,k] = (1/3)(2k+3)(2k+2)*C[2k+1,k] - (1/3)(2k+1)(2k)*C[2k-1,k-1] = (1/3)(k+2)(k+1)*C[2k+3,k+1] - (1/3)(k+1)k*C[2k+1,k], (与式) = (1/3)(2n+3)(2n+2)*C[2n+1,n] = (1/3)(n+2)(n+1)*C[2n+3,n+1]. >>671 三角不等式の束縛からのがれるため b+c-a = a' >0, c+a-b = b' >0, a+b-c = c' >0, とおく。条件は a', b', c' >0 だけになった。両辺に a = (b'+c')/2, b = (c'+a')/2, c = (a'+b')/2, を代入すれば、 (左辺) - (右辺) = (3/8)(st-u) - (1/4)(3u+st) = (1/8)(st-9u) ≧0, いつものように s = a'+b'+c' = a+b+c, t = a'b' + b'c' + c'a', u = a'b'c' とおいた。 等号成立は a'=b'=c' すなわち a=b=c のとき。 ハァハァ
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4365日前に更新/307 KB
担当:undef