不等式への招待 第3 ..
665:132人目の素数さん
08/11/27 23:22:39
>>661
[751] 微分法を使う。
g(t) = log(sin(e^t)) とおくと
g '(t) = (e^t)/tan(e^t) は単調減少(*)
g "(t) = −(e^t){1 - sin(e^t)cos(e^t)}/{sin(t)}^2 < 0,
∴ f は上に凸。
log(与式) = f(log(x)) + f(-log(x)) ≦ 2f(0) = log{sin(1)^2}
(*) {x/tan(x)} ' = 1/tan(x) - x/{sin(x)^2} = {sin(x)cos(x)-x}/{sin(x)^2} <0,
より、x/tan(x) は単調減少。
[763] 無限乗積表示(オイラー積表示)を使う。
sin(x) = x・Π[n=1,∞) {1−(x/nπ)^2},
{1−(x/nπ)^2}{1−1/(nπx)^2} = {1−1/(nπ)^2}^2 −(1/nπ)^2 (x−1/x)^2 ≦ {1−1/(nπ)^2}^2,
等号成立は x=1 のとき,
∴ (与式) ≦ {sin(1)}^2.
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4343日前に更新/307 KB
担当:undef