不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
664:132人目の素数さん 08/11/27 09:56:45 nCrオタ向け 納k=0,n](k+2)*(k+1)*[2k+1]C[k]=? 665:132人目の素数さん 08/11/27 23:22:39 >>661 [751] 微分法を使う。 g(t) = log(sin(e^t)) とおくと g '(t) = (e^t)/tan(e^t) は単調減少(*) g "(t) = −(e^t){1 - sin(e^t)cos(e^t)}/{sin(t)}^2 < 0, ∴ f は上に凸。 log(与式) = f(log(x)) + f(-log(x)) ≦ 2f(0) = log{sin(1)^2} (*) {x/tan(x)} ' = 1/tan(x) - x/{sin(x)^2} = {sin(x)cos(x)-x}/{sin(x)^2} <0, より、x/tan(x) は単調減少。 [763] 無限乗積表示(オイラー積表示)を使う。 sin(x) = x・Π[n=1,∞) {1−(x/nπ)^2}, {1−(x/nπ)^2}{1−1/(nπx)^2} = {1−1/(nπ)^2}^2 −(1/nπ)^2 (x−1/x)^2 ≦ {1−1/(nπ)^2}^2, 等号成立は x=1 のとき, ∴ (与式) ≦ {sin(1)}^2. 666:132人目の素数さん 08/11/27 23:24:24 >>664 それ本当に求まるのか? Mathematicaにやらせてみたら -((2 + n)*(3 + n)*Gamma[5 + 2*n]*Hypergeometric2F1Regularized[1, 5/2 + n, 3 + n, 4] + 2*Gamma[7 + 2*n]*Hypergeometric2F1Regularized[2, 7/2 + n, 4 + n, 4] + 8*(7 + 2*n)*Gamma[6 + 2*n]*Hypergeometric2F1Regularized[3, 9/2 + n, 5 + n, 4])/(2*Gamma[3 + n]) になったぞ。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4365日前に更新/307 KB
担当:undef