不等式への招待 第3 ..
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
492:132人目の素数さん 08/09/07 01:12:43 A+B+C=π π>A≧B≧C>0 として cos(A)+cos(B)+cos(C)-1 =cos(A)+cos(B)-cos(B+C)-1 =2*cos((A+B)/2)*cos((A-B)/2)-2*cos^2((A+B)/2) =2*cos((A+B)/2)*{cos((A-B)/2)-cos((A+B)/2)} =2*sin((A+B)/2)*{(-2)*sin(A/2)*sin(-B/2)} =4*sin(A/2)*sin(B/2)*sin(C/2)>0 log(cos(A)+cos(B)+cos(C)-1) =log(4)+log(sin(A/2))+log(sin(B/2))+log(sin(C/2)) ≦log(4)+3*log( sin( (A/2+B/2+C/2)/3 ) ) (∵log(sin(x)) は0<x<π/2で上に凸) =log(4)+3*log(sin(π/6))=log(1/2) log(x)の単調増加性から cos(A)+cos(B)+cos(C)-1≦1/2 以上から 1<cos(A)+cos(B)+cos(C)≦3/2 493:132人目の素数さん 08/09/07 01:15:39 >>487 cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1 が成り立つ[*]ので, 示すべき不等式は 0<sin(A/2)sin(B/2)sin(C/2) ≦ 1/8 と同値。 sin(A/2)>0などより,左側の不等号は明らか。 右側は,まずは相加相乗平均により sin(A/2)sin(B/2)sin(C/2) ≦ ( { sin(A/2)+sin(B/2)+sin(C/2) }/3 )^3 さらに,凸不等式より { sin(A/2)+sin(B/2)+sin(C/2) }/3 ≦ sin((A+B+C)/6) = 1/2 なので,sin(A/2)sin(B/2)sin(C/2) ≦ (1/2)^3 = 1/8 となり示せた。 [*]の証明は,C=π-(A+B)を左辺に代入して和積,倍角公式で変形するだけ。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4374日前に更新/307 KB
担当:undef