不等式への招待 第3章
at MATH
350:132人目の素数さん
08/07/02 20:57:26
>>341
B.4040.
a=tan(A/2), b=tan(B/2), c=tan(C/2) (0<A,B,C<π)
とおく。附帯条件から
cot((A+B+C)/2) = (1-ab-bc-ca)/(a+b+c-abc) = 0,
A+B+C = π,
ABCは三角形をなす。
(1) 鋭角三角形(or直角三角形)のとき
(左辺) = cos(A) + cos(B) + cos(C) ≦ 3cos((A+B+C)/3) (← 上に凸)
= 3cos(π/3) = 3/2.
(2) 鈍角三角形のとき、0<A,B<π/2<C とする。
(左辺) = cos(A) + cos(B) + cos(C) ≦ 2cos((A+B)/2) + cos(C) (← 上に凸)
= 2sin(C/2) + cos(C) = 1 +2sin(C/2) -2sin(C/2)^2
= √2 - 2{sin(C/2) -(1/√2)}{sin(C/2) -1 +(1/√2)} < √2 (← sin(C/2) > 1/√2)
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4343日前に更新/307 KB
担当:undef