『解析概論』について ..
[2ch|▼Menu]
620:132人目の素数さん
09/02/02 11:02:54
URLリンク(jp.youtube.com)

621:132人目の素数さん
09/02/10 10:25:52
229ページのコロンのいみがわらないのでおしえてください。
前ページの(10)からどうやってコロンのやつになるのかもおしえてください。

229ページのまんなかにある連立方程式からどうやって
解を導くのかも教えてください。

どうしてもわかりません。本当に困ってます。
このスレだけが頼りです。
よろしくお願いします。

622:132人目の素数さん
09/02/10 12:01:22
>>621
どれの話?

623:132人目の素数さん
09/02/10 12:07:22
とにかく教えてください。
どういう風におしえてくれるとうれしいかというと、例を挙げると
コロンは○○を表しています。
前ページの(10)を○○←(詳しい式を書く)すると
コロンのある式になります。
229の真ん中の連立方程式の解き方は○○←(詳しい式を書く)と
やると書いてある解になります。
この○○に当てはまる分を書けばいいんですよ。
このすれの頭の良い人たちなら簡単に決まってるので
お願いします。

624:132人目の素数さん
09/02/10 12:13:27
俺のと版が違うせいか229ページに連立方程式なんてありませんでした

625:132人目の素数さん
09/02/10 12:19:14
ページ間違いました。
299でした。
心よりお詫び申し上げたいと思います。

626:132人目の素数さん
09/02/10 12:32:44
こんな本読んでるからいつまでたっても入門者なんだよ

627:132人目の素数さん
09/02/10 13:15:36
はやく入門者抜け出したいんで、質問の答え教えてください。
抜け出した人ならかんたんにこたえられるでしょう。

628:132人目の素数さん
09/02/10 13:18:15
 ┌○┐
 │お| ハ,,ハ
 │断|('A` )  お断りします
 │り _| //
 └○┘ (⌒)
    し⌒

629:132人目の素数さん
09/02/10 13:35:12
>>625
侘びなんて次から気をつけてくれりゃあいいことだけどさ、回答者だってバカじゃないんで、
ページ数だけじゃなくて章番号、節番号、当該箇所のコンテキストなどを粗くでいいから
説明すりゃ多少のことは補ってくれるだろうに。

そこのコロンは小学生時代に犯ったはずの連比。

630:629
09/02/10 13:39:00
書き込む前にリロードしたらよかった……>>629は書き込むべきじゃなかった。
口だけで詫びるだのすまんだのいったところで、どこぞの総理大臣と一緒で
何の責任も感じてないし実際に何も謝れてないという典型だな…

631:132人目の素数さん
09/02/10 13:41:34
> 229の真ん中の連立方程式の解き方

中学生がやる連立一次方程式の普通の解き方でちゃんとそれになるよ。
単に行列式の比の形に書いてあるだけだから、線型まじめにやってりゃバカでも判る。

632:132人目の素数さん
09/02/10 13:47:02
ありがとうございます。
1番目と3番目の○○は解決したことにします。
あと2番目お願いします。
つまり、(10)から比になることが分かる方法です。

633:132人目の素数さん
09/02/10 14:12:09
>>632
線型を真面目に習ったのなら、そこの連立方程式の解空間が1次元になることも
解空間が1次元なら任意の解はある解ベクトルのスカラー倍になることも
あるベクトルとそのベクトルのスカラー倍は成分の連比が同じになることも
自明な話のはずだが?

そもそもそこの連立方程式が解けないってんなら>>631の言うとおりで
中学からやり直せってことになるがね。

634:633
09/02/10 14:15:29
ん、>>633>>632を読み間違えたかな。
何れにせよ中学でやった内容から一歩も出ないことに変わりは無いけど。

635:132人目の素数さん
09/02/10 14:26:36
小・中学生のためのスレはここですか?

636:132人目の素数さん
09/02/10 14:27:30
別にお前みたいに線形とか必死じゃないし、、、

637:132人目の素数さん
09/02/10 14:31:50
中学レベルの加減法(吐き出し法、ガウス消去)ができないやつには解析概論は無理だろ

638:132人目の素数さん
09/02/10 14:36:01
>>637
掃き出し法とガウス消去法って同じじゃないの?

639:132人目の素数さん
09/02/10 14:36:22
不親切な書き方の高木が一番悪い。

640:132人目の素数さん
09/02/10 14:39:04
不親切って程のものではない

641:132人目の素数さん
09/02/10 14:39:25
糞ゴミは単位が取れるシリーズでもやってればいいよ。
どうせ数学使うようなところには就職できないわけだしw

642:132人目の素数さん
09/02/10 14:41:03
趣味でやってるだけだが。

643:132人目の素数さん
09/02/10 14:41:19
この板には優しさが足りない

644:132人目の素数さん
09/02/10 14:43:24
文句言いに来ただけの白痴なんか
さっさと板から淘汰すべきだからね。

645:132人目の素数さん
09/02/10 14:44:26
まずはkingを淘汰してくれ

646:132人目の素数さん
09/02/10 14:53:42
>>623>>627
こいつアホだな
釣りか?

647:132人目の素数さん
09/02/10 15:03:11
逆に天才だと思う。

648:132人目の素数さん
09/02/10 15:14:50
>>638
加減法まで含めて同じ。だから括弧に入れている。

649:132人目の素数さん
09/02/10 16:07:03
>>620-648
一人で暇な野郎だ

650:132人目の素数さん
09/02/10 16:10:37
その発想はなかった

651:KingGold ◆3waIkAJWrg
09/02/10 16:50:15
Reply:>>645 お前の共倒れ病はいつ治る。

652:132人目の素数さん
09/02/11 01:00:12
URLリンク(event.movies.yahoo.co.jp)

653:132人目の素数さん
09/02/11 01:12:49

概論ってのは、インターネットの世界で例えると

コピペ なんですよ。

先人の書物からコピペしたものを、ありがたがるとは、

それは、あなたたちが、原書を探し、読むことを

放棄した、ただ便利なもの思っているだけの

ことですよっ。

うん。


654:132人目の素数さん
09/02/11 01:15:26
まったく例えになってない。
白痴死ね。

655:132人目の素数さん
09/02/11 01:27:30
概論に限らず理系の本は大抵原論文のコピペ
或いはコピペのコピペだが。

理系の書き物では一般には原著に特に価値があるというような考え方はしない。
もちろん例外もあるけどね。

656:132人目の素数さん
09/02/11 01:28:06

中学生は早く寝なさい。


657:132人目の素数さん
09/02/11 11:03:00
膨大な情報から何をPick upするかはかなりのセンスを必要とすると思うがなあ。

658:132人目の素数さん
09/02/11 11:24:28
だから、良い教科書は少ない。

659:132人目の素数さん
09/02/12 05:05:31
この本は、よめばよむほど よくできている。
よくわかる系の薄い本(分かったのかどうか、だまされた気分になる)より、よっぽど分かりやすい。
ボリュームの割に、内容が豊富。複素解析やフーリエはもちろん、ルベーグまで載っている。
語り口に親しみがあり、著者とともに驚いたり、感動できる。
読み進めていくと、いかに最初の実数の切断の定義が根源的か、ひしひしと分かってくる。
翻って、なんとまとまりの好い本であるかと再認識させられる。

660:132人目の素数さん
09/02/12 07:14:55
>>659
本人乙

661:132人目の素数さん
09/02/12 10:55:56
解析概論は幼稚園入園までに読んでおくように

662:132人目の素数さん
09/02/12 12:37:24
>>660
( ゚Д゚)!

663:132人目の素数さん
09/02/12 12:42:30
>>660
お前…

664:132人目の素数さん
09/02/12 15:57:00
このスレにイタコが居るときいてやってきました

665:132人目の素数さん
09/02/12 17:26:12
・・・この中に偽の女学生が混じっておる・・・

666:132人目の素数さん
09/02/14 11:09:47
URLリンク(bodyaid.net)

667:132人目の素数さん
09/02/15 23:59:04
然らばを現代日本語に直すとなんになる?

668:132人目の素数さん
09/02/16 00:24:45
そのとき

669:132人目の素数さん
09/02/16 01:11:15
そしたら

670:132人目の素数さん
09/02/16 01:38:27
順接なら何でもおk

671:132人目の素数さん
09/02/23 22:30:07
今日は、ガンマ函数がs平面の全部に解析的に延長されるところに感動した。

672:132人目の素数さん
09/03/02 16:39:37
URLリンク(www.youtube.com)

673:132人目の素数さん
09/03/06 17:08:35
やればやるほど味が出るという点では杉浦の解析入門の方がでかいだろ
到達点も概論より高いし

674:132人目の素数さん
09/03/10 11:39:40
URLリンク(www.youtube.com)

675:132人目の素数さん
09/03/10 13:21:37
「もしも読了の後、読者自ら不急の部分を抹消して、
自家用の教本式体系を作成するならば著者の目的は
初めて達成されるのである。」(第一版緒言より)


諸君!読んだ後に「自家用の教本式体系」を作ったかい?
これは高木先生からの「宿題」ですよ。
他人がやった「宿題」を見るのはいいでしょうが、
それで自分自身の「宿題」は終わったわけではないよ。

676:132人目の素数さん
09/03/10 13:36:02
何を息巻いてんだかこの酔っぱらいは

677:132人目の素数さん
09/03/10 14:15:43
宿題踏み倒し野郎が何を言っても無駄

678:132人目の素数さん
09/03/10 14:27:19
諸君!読んだ後に不急の部分を抹消したかい?

とかアホ過ぎるにも程がある

679:132人目の素数さん
09/03/10 14:39:44
またカスどもが来た

680:132人目の素数さん
09/03/10 22:04:57
読了のあと、さらに不急の部分を継ぎ足すのが解析概論ヲタの真骨頂

681:132人目の素数さん
09/03/11 01:15:24
www

682:132人目の素数さん
09/03/11 13:11:51
杉浦さんの解析入門だってそうなんだろ?

IIのまえがきに「全般的な骨組みについては高木貞治先生の『解析概論』に
学んだ所が多い.高木先生の本の現代化がこの本の目標の一つであった.」

って書いてあるしな。

683:132人目の素数さん
09/03/11 16:26:26
つまり、解析概論は未完成品で、杉浦解析は解析概論の完全版

684:132人目の素数さん
09/03/11 17:38:31
杉浦解析って部分読みしにくいんだよねー

685:132人目の素数さん
09/03/12 05:16:44
URLリンク(nikki4boyaki.blog93.fc2.com)

686:132人目の素数さん
09/03/12 05:25:00
URLリンク(homepage1.nifty.com)

687:132人目の素数さん
09/03/12 11:35:46
>>684
部分読みしやすい本を書いたらどうだ?

688:132人目の素数さん
09/03/12 13:21:52
>>675みたいなのは毛沢東語録をかかえてフルチンで走り回る

689:132人目の素数さん
09/03/12 14:34:46
お前のオヤジのことか?

690:132人目の素数さん
09/03/12 17:37:43
>>687
岩波の現代数学シリーズ。
あれ、部分読みしやすいよ。

691:132人目の素数さん
09/03/13 11:06:56
解析概論を初めから全部読んだ奴を尊敬しちゃうから、
俺も尊敬される人になるために全部読むように努力しちゃう。

692:132人目の素数さん
09/03/17 15:31:00
> 【依頼に関してのコメントなど】真面目な検討なのでお願いします。
> ---------------------------------------------------------------------------
> 【板名*】数学板
> 【スレ名*】関数方程式レッスド
> 【スレのURL*】スレリンク(math板)
> 【本文*】
URLリンク(www1.axfc.net) 自分なりの結果です。
> x y z=Σy
> 1 500 500
> 2 1000 1500
> 3 1000 2500
> 4 1500 4000
> 5 1500 5500
> 6 2000 7500
> 7 2500 10000
> 8 3000 13000
> 9 4000 17000
> 10 5000 22000
> 11 6000 28000
> 12 7500 35500
> 13 9000 44500
> 14 10500 55000
> 15 12000 67000
> x=35 までこれに近似させて求めていきたいです。関数・近似式・値等教えていただけないでしょうか?

693:132人目の素数さん
09/03/19 04:26:58
URLリンク(cart1.fc2.com)

694:132人目の素数さん
09/03/19 20:15:40
この本、多変数関数の微分の説明が稚拙。使い物にならない。

695:132人目の素数さん
09/03/19 20:53:41
その章のどこがどう稚拙なのか具体的に書かなければただの中傷でしかない

696:694
09/03/20 01:03:52
使い物にならないのは私のほうだったー!!!!!

697:132人目の素数さん
09/03/20 08:55:00
この本は凡人には難しすぎる
凡人は杉浦解析でも読んどけ

698:132人目の素数さん
09/03/20 14:27:15
>>697
凡人には、マンガでわかる微分積分だろ
URLリンク(www.amazon.co.jp)

699:132人目の素数さん
09/03/22 10:21:52
すみません。
301ページの19行目と(7)の
x_1,....x_n;u_1....u_nのセミコロンの意味がわかりません。
どうしても分かりません。本当に困っています。
ついでに20行目の(定理73)ってかいてあるところが(定理74)だと
思うんですが、なぜ(定理73)なのかわかりません。
どうしても分かりませんでした。
よろしくお願いします。

700:132人目の素数さん
09/03/22 16:10:10
>>699 ただどこまでがuの関数か分かりやすくしてるだけでしょ。
 表記法にやたらこだわるのは二流以下。
 あと、thm73;陰伏関数の確定。
 thm74 十分近傍での逆関数の確定。

701:132人目の素数さん
09/03/22 17:09:49
まあ ; とかを表記の都合で使う書き方とかを
知らなかったら、もしかして自分がすごい勘違いしてないかとか
不安になるのは間違いじゃ無いと思うけどね。
初学者が「ここはどうせこういう意味に違いない」とか考えて
適当に進むのは危険だと思う。

702:132人目の素数さん
09/04/19 11:48:26
”難しい”のが良いという人には向いているだろう。


703:132人目の素数さん
09/04/19 12:11:14
やたら解析入門とか崇拝して得意がってる奴いるけど、
むしろああいうガッチリ厳密に書いてある本の方が読むのにセンスいらないんだよね。
(頭のなかで翻訳しながら読む必要がない。)
この解析概論や溝畑の偏微分方程式論とかがいい例だ。
解析概論には厳密性が欠けてるとか批判してるやつはそもそもナンセンスなんだよ。
数学は本来自分の頭で考えるものだから。

704:132人目の素数さん
09/04/19 12:27:04
ん?全部一人で考えたの?
えらいねえー

705:132人目の素数さん
09/04/19 16:18:59
解析概論は多変数の扱いが雑なことで有名だが
自力で論理構築できる読者がどれだけいるだろうか。
大抵の読者は感覚的に理解(正確に言うと「誤解」だが)して
わかったつもりになってるだけだ。

そういう意味では工学部向けの本ではある。

706:132人目の素数さん
09/04/19 19:10:05
>>702 訂正
難しい(誤)
難しい言い回し(正)


707:132人目の素数さん
09/04/19 23:37:38
>>705 まぁそれでいい"ふるい"にはなるだろ。
 数学者として生きてくならそれくらいできなきゃな。。。
 最近院がやたら定員増やしたせいでアホのくせに
 学者志望です^^とか言う奴の多いこと(苦笑)

708:132人目の素数さん
09/04/20 07:40:46
優秀な学生なら解析概論の穴を埋めることくらいできるだろうけど、
かなりの時間はかかるよ。

車輪を再発明するよりも、クルマに乗ってさっさと先に進む方がよい。

709:132人目の素数さん
09/04/20 13:21:30
ルベーグ積分を自力で再発明しちゃうような人だったら
いくら威張ってくれてもいいが・・・

710:132人目の素数さん
09/04/20 18:26:00
>>709
グロタンのことか!

711:132人目の素数さん
09/04/21 16:22:51
高木先生って来年で死後50年だね
ということは著作権も切れるということか

712:132人目の素数さん
09/04/21 21:25:43
>>706
代数学講義とかはどう?


713:132人目の素数さん
09/04/24 18:32:31
shareで無料でダウンロードできるのも来年で合法だね。

714:132人目の素数さん
09/04/24 22:17:07
補訂者の著作権に注意。
まあ、
新装版で安くなってくれると一番うれしい。

715:132人目の素数さん
09/04/26 11:49:42
補訂無しでもいいだろ。

716:132人目の素数さん
09/05/01 00:22:45
高校生ですが、解析概論はかなり分かりやすいと思います(まだ一週間で2章までしか読んでいませんが)
今までは岩波基礎数学選書等で抽象代数の勉強をしていたのですが
その時よく「これは明らか」みたいな書き方で全然明らかでは無いような部分が省略されている事が良くありました。
しかし解析概論にはそれが無いような気がします。
凡人には難しすぎる、等と言われていますが、現代の他の数学書はそれ程分かりやすいのでしょうか?

717:132人目の素数さん
09/05/01 00:44:22
速すぎる
もっとゆっくり読め

718:132人目の素数さん
09/05/01 12:33:02
>>716
分かったつもりになっている馬鹿発見!

719:132人目の素数さん
09/05/01 14:08:32
釣りでしょ

720:132人目の素数さん
09/05/05 09:19:18
絶対に一章の定理4で2日は掛かるだろ。
2章の後半は最低でも半月は掛かるから
1週間で2章まで読んだなんていうのは絶対嘘。

721:132人目の素数さん
09/05/05 17:40:13
この本を神聖視してるのは団塊以上の年寄りだけ。
彼らが若かったころはこれほど内容の豊富な解析学の邦書は他になかったのだろう。

722:132人目の素数さん
09/05/05 18:03:58
23歳だが

723:132人目の素数さん
09/05/05 18:08:37
シュワルツの訳本解析学全7巻が東京図書から出てた

724:132人目の素数さん
09/07/06 16:55:45
かつて高木の解析概論と勢力を競い合った、藤原松三郎の微分積分学で勉強してる大学生は今やもうほとんどいないだろうけど、
なんで解析概論は生き残ってるんだろうか?

725:132人目の素数さん
09/07/06 17:09:57
解析概論って何も知らずに読むと一番最初の所で詰まる気が
大学に入りたての頃背伸びしてこけた私の意見

726:132人目の素数さん
09/07/06 17:23:36
ムツゴロウ先生のエッセイが数学少年と教育業界人の心を鷲掴みにしたんだろう

727:132人目の素数さん
09/07/06 22:35:13
>>725
実数の連続性と位相だろ。
すべて自明に見えて、意味が分らないんだよ。


728:132人目の素数さん
09/07/07 19:01:14
>>727
そうそうそこら辺。大学入って2年くらいすると普通に読めるんだけどね。
正直言って字も細かいし読みづらいから初めての人には薦めない。

729:132人目の素数さん
09/07/08 00:47:41
>>727
ハイネ-ボレルとかも自明ですか?

730:132人目の素数さん
09/07/08 01:12:52
有限回の論理操作で得られるものはすべて自明だろう。w

731:;
09/07/08 05:46:33
>>728 杉浦の解析入門や笠原の微分積分学よりまし。

732:132人目の素数さん
09/07/08 12:42:25
この本は上野健爾さんが酷評してたよね

733:132人目の素数さん
09/07/08 12:52:25
自明なんだけど証明するとなると難しいんだよな。

734:132人目の素数さん
09/07/08 17:28:13
>>729
自明に見えない?
分ってないころは、どうやって証明するのかは分らないが、定理のステートメントは
自明に見えたんよ。
証明を追うのが退屈で退屈でしょうがなかった。
自分では証明できないんだけどね。

735:132人目の素数さん
09/07/08 17:35:36
そうゆうのが退屈に思える人は数学向いてないんだよね。
数学ってのは公理から導いていくもので
直感的にあきらか、なんてのは全く論外なわけで。

736:132人目の素数さん
09/07/08 17:41:42
自明ってのは容易に証明できるって意味だから

737:132人目の素数さん
09/07/08 17:55:14
>>735
>直感的にあきらか、なんてのは全く論外なわけで。

小平先生も言ってるよ。
広中の特異点解消定理の証明は分らないけど、使ってるうちに直感的に
明らかになってくるので、じゃんじゃん使ってると。
直感的に明らかになれば、証明は忘れてもいいと言っている。
もっと身近ではハーン・バナッハの定理の証明は知らないけど、使ってる
数学者なんていくらでもいる。
これって論外なの?

738:132人目の素数さん
09/07/08 18:07:48
>>735
オマエ、数学者じゃないだろ

739:132人目の素数さん
09/07/08 18:12:25
「直観的に明らか」と「自明」は全然意味が違うんだけど

740:132人目の素数さん
09/07/08 18:41:05
>>739
このド素人めにkwsk!

741:132人目の素数さん
09/07/08 18:53:06
自明 簡単に証明できる
直観的に明らか 明らかに成り立っているように思える

つまり「自明」は証明論的な概念であり、「直観的に明らか」は意味論的な概念。

742:132人目の素数さん
09/07/08 21:04:17
>>741
> 自明 簡単に証明できる
> 直観的に明らか 明らかに成り立っているように思える

この説明では…

自明 … 簡単に証明できる正しいこと
直感的に明らか … 明らかに成り立っているように見えるが、正しいかどうかは分からない

ということですな

743:132人目の素数さん
09/07/08 21:10:45
「正しい」って何?

744:132人目の素数さん
09/07/08 21:57:53
>>743

正しい =「主張内容が正しい」= 命題(主張内容)が真

745:132人目の素数さん
09/07/08 22:21:39
自明 = 永田の可換環論がすらすら読める

746:132人目の素数さん
09/07/12 05:38:37
>>732
2年とか3年で習う代数や幾何の知識で証明しないといけないことがあるんだから
網羅的にってのがもう数学科には合わないような気がするけどな
とりあえず知識として仕入れといて後で詳しく補完ってやり方が俺には無理だった


747:132人目の素数さん
09/07/19 02:33:11
s

748:132人目の素数さん
09/07/31 08:51:52
>>732
上野は一松をオススメしてたね。


749:132人目の素数さん
09/08/05 23:52:18
533 :
昨日からずっと悩んでいる積分。

 ∫[0,∞) exp(−(a/t)^2)*exp(−t^2) dt = sqrt(π)/2 * exp(-2a)

はじめはガウス積分でも使うのかと思ったけれどうまくいかない・・・
どなたか分からないでしょうか?

スレリンク(math板:533番)
さくらスレ259

750:132人目の素数さん
09/08/05 23:53:29
>>749

 J(a) = ∫[0,∞) exp(−(t−a/t)^2) dt, 
とおけば、
 dJ/da = 0,
となる。故に J(a) は a に関して定数である。
a=0 とおいて J(a) = (√π)/2 を得る。

高木:「解析概論」改訂第三版, 練習問題(4)-(10), p.200, 岩波 (1961.5)

751:132人目の素数さん
09/09/05 02:31:41
931

752:132人目の素数さん
09/09/26 05:00:00
三年四時間。


753:132人目の素数さん
09/10/06 04:31:14
高木が「直感的に明らか」と書いてる部分は、
「この部分は証明しようとすると難しいから都バスね」という意味で言ってる。
大抵の場合、そういう話は関数解析とかで証明する分野。
大学初年度からそういう細かいことにこだわらずに先に進んでいくべき。
そうすればなぜ飛ばしたかわかる筈。
疑問を持たない奴も困るけど、こだわり過ぎるのも困りもの。

754:132人目の素数さん
10/02/04 16:54:26
545

755:132人目の素数さん
10/02/06 21:59:40
『解析概論』ってズルくね?
本棚に、『はじめからわかる微分積分』…とかセンスの無い名前の書籍が並んでる中に、
  『解  析  概  論』(キリッ
って置いてあったら、否が応でも手に取るだろ。

756:132人目の素数さん
10/02/06 22:11:02
どうして
『数  学  解  析』(キリッ
じゃだめなのだろう。

757:132人目の素数さん
10/02/06 23:17:40
解析概論のコピペ本の書名を教えてください
例もそっくり移した劣化コピー本があるそうですが…

758:132人目の素数さん
10/02/06 23:22:25
>>757 東大出版の解析入門Tのことですね。

759:132人目の素数さん
10/02/07 00:23:58
>>758
いや、それじゃなかったな
大量に本を書いてるオッサンだったことは覚えている

760:132人目の素数さん
10/02/19 02:36:57
解析概論、ってことは、解析詳細論って本を売れば、
学生は喜んで買うのかな。
概論、とはなってるけど、内容も概論なんですか?
本は持ってますけど、結構なボリュームですよね。
これ以上、詳細に書き下ろせるのでしょうか。

761:132人目の素数さん
10/02/19 05:28:45
昼間にヒマな人妻の相手して、夕方からパチソコ。
夜は飲みに行って精力温存して明日に備える。
どう考えても俺って天才だよな(笑)

762:132人目の素数さん
10/02/19 09:01:10
ほんとに詳細に書いてたら、本10冊あっても数列さえ終わらないんじゃない?
上手に省いて書く方がよっぽど難しいんだよねえ。

763:132人目の素数さん
10/02/19 17:18:31
「概論」というのは「省いている」という意味ですか。
「大まかな説明」って意味かと思っていましたので、
厳密性に欠けるものだと思っていました。


764:132人目の素数さん
10/02/19 17:29:38
>>757
小平解析入門のことか?
確かこれには「この本は解析概論のお勉強ノートである」っていう趣旨の文章が書かれていた。


765:132人目の素数さん
10/02/19 23:44:02
>>762
とある大先生が、ある年「今年は厳密に微積を教えるぞおお」と
はりきって教えたら、10月に実数の加法がwell-definedであるとか、
加法演算の連続性の証明をやっていた・・・という話がある。

年度末にどこまで進んだか、怖くて聞かなかった。

766:132人目の素数さん
10/02/20 18:41:27
かたや別の先生の講義ではルベーグ積分の講義を同時並行してやってたとか。


767:132人目の素数さん
10/03/14 17:42:07
三大「タイトル買いしてしまう本」の1つだな

768:132人目の素数さん
10/03/14 18:04:08
他2つは一体なんだ?

769:132人目の素数さん
10/03/14 22:44:13
>>732
> この本(=解析概論)は上野健爾さんが酷評してたよね

そうか、彼も偶には良い事言うんだ…

770:132人目の素数さん
10/03/14 22:54:48
いまどき解析概論なんか読むなよ・・・

771:132人目の素数さん
10/03/15 01:17:34
>>769
酷評はしてないだろう
ありきたりの評言をのべただけだ

どうせ読んでないし

高木と上野  どっちもどっちだとしても
上野を信じる気にはなれないな

772:132人目の素数さん
10/03/15 07:24:19
解析概論読むならポストモダン解析学を読みな

773:通りすがりのアホ
10/03/21 23:21:17
欠点をあげたらきりがない。それだけ数学自体が進展したということ。
今なら整理された記述のわかりやすい微積分の本が多数あるので、はしごしてみるといいかも。

個人的には、
・漢文の素養が散見できる味のある記述
・1変数の微積分、無限級数、関数論初歩
のあたりをじっくりと読み込むことを薦めるぐらいかな。

積分法(多変数)、ルベーグ積分の箇所は他の本で理解を深めていった。
だいたいそんなところじゃない?

774:132人目の素数さん
10/03/22 01:00:03
上野が何をほざいても誰も相手にせんぞw
反応するのは深谷と河野と加藤(引用2)だけw

775:132人目の素数さん
10/03/22 01:11:15
最後のやつは
「俺が教授になったのはUの力じゃねーよ、あんなの誰にも相手にされてねーよ!」
とかいってたようだがw

776:132人目の素数さん
10/04/06 11:42:25
>今なら整理された記述のわかりやすい微積分の本が多数あるので、はしごしてみるといいかも。

20年前に比べてむしろ少なくなってる気がするなあ。
当時の名著とか、ほとんど絶版になってるし。

777:通りすがりのアホ
10/04/06 12:36:33
>当時の名著とか、ほとんど絶版になってるし。
名著って、具体的にはどの本だと思います?
名著の定義って何だと思いますか?
(と聞いてみたい)

最近図書館の本棚を見てよく思うこと。
「どうでもいい本(半数以上)が場所を占有しているなー」
(書架に名著が埋もれている!)
最近本屋の本棚を見てときどき思うこと
「これって復刊する必要ある?」

778:熊猫 ◆ghclfYsc82
10/04/06 17:03:55
>>777
名著っちゅうんは「アンタがこれから書く本」っちゅう定義で
どうでっしゃろ!




779:132人目の素数さん
10/04/06 17:51:41
>>778
「名著って書く必要ある?」と思うに違いない。

780:132人目の素数さん
10/04/06 21:06:37
えっ、通りすがりのアホ=UFJ頭取?
あのコデラホールディングスグループの

781:132人目の素数さん
10/04/09 14:41:06
「蚊」って言う字は、虫が「ブーン(文)」と音を立てて飛ぶところから来てるんだって。
「猫」は「みょう(苗)」と鳴くからで、「鳩」は「クックー(九)」と鳴くから、
そう書くんだよ。

782:132人目の素数さん
10/04/09 17:58:39
今、新入生向けの解析の本って何なんだろう?
俺が入学した時は、
高木:解析概論
杉浦:解析入門T・U
を先輩に奨められたが、個人的に良かったのは
溝畑:数学解析上・下
だった。
今なら、Rudinの本(訳はわからん。現代解析学とかだっけ?)も良さそうに思う。

他にどんなのが解析概論と共に薦められる本なんだ??

あと、良く挙げられるのは最初の2冊だけど、どっちも専門は代数なのは何かあるのか?


783:132人目の素数さん
10/04/09 18:11:09
sugiura ha daisuu ja nai yo


784:132人目の素数さん
10/04/09 23:51:41
古典としての価値は認めるけど、未だに講義の教科書とか参考書にこれを指定してるマヌケな老人が生きてるのが悲しい。

785:132人目の素数さん
10/04/10 02:59:00
2ちゃんねるなんてものを知らないやつが
えらそうに書き込んでいるだけだ。

786:132人目の素数さん
10/04/10 03:24:23
それか>>785みたいなコピペ

787:132人目の素数さん
10/04/10 04:51:09
>2ちゃんねるなんてものを知らないやつが
>えらそうに書き込んでいるだけだ。

正しい意見だなw

788:熊猫 ◆ghclfYsc82
10/04/10 07:48:34
>>779
いやいや、「名著っちゅうんは我こそが書く必要がアルのや」と考える
かも知れへんがな、ソレこそ「どっかーの誰かサ〜ン」みやいにやナ。
そやし是非とも書く事を試して貰わへんとアカンのとちゃうかァー




789:132人目の素数さん
10/04/10 09:16:05
>>782
今年の新入生だが、昨日の最初の微積の授業でその上二冊と
小林:微分積分読本を紹介されました

790:132人目の素数さん
10/04/10 10:13:42
>>783
表現論か?



791:132人目の素数さん
10/04/10 22:24:09
解析概論について(岩波講座「数学」の月報5)
 URLリンク(www.iwanami.co.jp)

URLリンク(mathsoc.jp)
 高木貞治 没後50年祭(=50周忌)

792:132人目の素数さん
10/04/10 22:52:36
>>791

dilemma − 【名】【C】
 1 (好ましくない二者択一を迫られる)板ばさみ,窮地,ジレンマ.
 用例
  be (caught) in a dilemma 板ばさみになる, 進退きわまる.
  the dilemma of whether to break one's promise or to tell a lie 約束を破るかうそをつくかの板ばさみ.
 2 【論】 ジレンマ,両刀論法.
  → be on the hórns of a dilémma
 [ギリシャ語「二重の問題」の意 (DI‐1+lēmma 「前提,仮定」)]


 pedantic −【形】学者ぶった,もの知り顔の,衒学(げんがく)的な.


 URLリンク(ejje.weblio.jp)
 |研究社 新英和中辞典|

793:132人目の素数さん
10/04/11 19:48:06
二十数年前に大学にはいった時に初めて買った本。
大学の数学が勉強できるって期待に胸躍らせていた18歳のオレ(´・ω・`)

卒業して転勤を繰り返すうちに本はどこかにいってしまったけど
今度の夏ボーナスで買ってみるかなあ。

794:132人目の素数さん
10/04/11 22:59:49
>>774>>775
「通りすがりのアホ」消えたネ
正体を見抜かれては、書けなくなるのも納得

795:132人目の素数さん
10/04/18 01:05:35
>>781
ミャオに関しては実際そのとおりだな

796:132人目の素数さん
10/04/20 14:58:28
>>793
ボーナスが出ないと買えないような本でもないと思うが。
まあ、その辺の街の本屋には売ってはないだろうけど。

797:132人目の素数さん
10/04/20 16:09:44
>>794
正体を見抜かれると書けなくなるのでしょうか?
猫は例外なんでしょうか?

798:132人目の素数さん
10/04/20 16:50:18
猫は恥知らずなんですか?

799:132人目の素数さん
10/04/20 18:17:43
正体を見抜かれ
またも
引き籠もる

躁だった
なおさら軽く
鬱になる

はしゃいでは
みても空しき
批評かな

うすぺらな
猫に招かる
偽小判




800:132人目の素数さん
10/04/20 18:27:20
うそ八百

801:132人目の素数さん
10/04/20 18:44:16
内弁慶

802: ◆27Tn7FHaVY
10/04/20 22:22:12
高木DVDくれ!

803:132人目の素数さん
10/04/20 22:46:34
「解析詳論」に相当する本て、何があるんです?
(和書洋書問わず)

804:132人目の素数さん
10/04/20 22:51:08
概析解論

805:132人目の素数さん
10/04/21 03:46:06
>>791
>URLリンク(mathsoc.jp)
> 高木貞治 没後50年祭(=50周忌)
>(寺尾寿教授在職25年祝賀会の写真に高木貞治先生が写っています)

その写真のどこ?

806:132人目の素数さん
10/04/22 22:55:48
>>805
向かって右の群衆の中央
No.103


807:132人目の素数さん
10/04/23 11:32:12
>>806
前から6列目、右から6人目くらいの人?

808:805
10/04/23 11:35:41
ああ、分かった。
下のほうに拡大写真があったんだ。

809:132人目の素数さん
10/04/24 07:33:38
URLリンク(mathsoc.jp)

ここに載ってる高木の論文目録を見るとめぼしいのは類体論関係のみだな。
あとは数学界にとってどうでもいいようなものばかり(のように見える)。
少なくとも類体論関係とその他の落差が大きい。
類体論で精力使いきってその後はやる気が失せたということか。

810:132人目の素数さん
10/04/25 00:02:14
>>809
類体論だけでも充分偉大な成果だと思うが。

811:132人目の素数さん
10/04/25 00:10:52
△充分(当て字)
○十分

812:132人目の素数さん
10/04/25 00:22:35
>>809
「精力使いきって」というより、戦時中以外は研究に興味が
薄かったんじゃないかと。当時は、西洋数学を輸入して
理解できれば、東大教授。

戦争で論文が来なかった時だけ研究した。

813:132人目の素数さん
10/04/25 00:47:23
>>810
俺(>>809)は類体論だけじゃ不十分と言ってるわけではない。
類体論で一発当てて、その後研究にあまり力を入れないという姿勢を問題としている。


814:132人目の素数さん
10/04/25 01:01:18
>>812
それは第一次大戦前の話だろ。
高木は類体論の証明でノイローゼになるくらい苦労したと書いてる。
これがトラウマになって、以後数論には嫌気がさしたんじゃないか。

815:132人目の素数さん
10/04/25 01:04:34
自分の証明が正しいのかどうか分らなくなった、と書いているね。
どこかに、こうなる筈だという推定の部分があった、ということなのかね、結果的に正しかったのだとしても。

816:132人目の素数さん
10/04/25 01:57:38
>>815
類体論の証明は複雑で長いことで有名。
その為、証明の簡易化に多くの数学者が努力してきた。
ましてパイオニアである高木の苦労は押して知るべし。

817:高木
10/04/25 03:13:47
>>809 >>813
 全体私はそういう人間であるが、何か刺戟がないと何もできない性質である。
今と違って、日本では、つまり「同業者」が少いので自然刺戟が無い。
ぼんやり暮らしていてもいいような時代であった。
それで何もしないでいた間に、今の「類体論」でも考えていたのだろうと思われるかもしれないが、まあそんなわけではないのである。
ところが、1914年に世界戦争が始まった。
それが私にはよい刺戟であった。
刺戟というか、チャンスというか、刺戟ならネガティヴの刺戟だが、つまりヨーロッパから本が来なくなった。
その頃誰だったか、もうドイツから本が来なくなったから、学問は日本ではできない
─というようなことを言ったとか、言わなかったとか、新聞なんかで同情されたり、嘲弄されたりしたことがあったが、そういう時代が来た。
西洋から本が来なくなっても、学問をしようというなら、自分で何かやるより仕方が無いのだ。
恐らく世界大戦が無かったならば、私なんか何もやらないで終わったかもしれない。
『近世数学史談』

URLリンク(www.toyokeizai.net) 前編
URLリンク(www.toyokeizai.net) 後編


818:132人目の素数さん
10/04/25 04:08:03
>>812

高木は、ドイツ留学でこの予想「クロネッカーの青春の夢」の部分的な解決に成功しました。
このとき、高木は、アーベル拡大体に制限をつけた「類体」を考えだしたのです。そしてドイツの数学者たちは、さらにこの類体の先にある特別な類体を考えることでクロネッカーの青春の夢に迫ろうとしました。
 帰国後、第1次世界大戦が始まり、西洋からの情報がいっさい日本に入らなくなると、高木は喜んだように、独力で思考を突き進めていきました。
高木がとった方向は、「類体」それ自体を徹底的に追求することでした。
そして、ついにアーベル拡大体は類体であることの証明に成功したのです。
1920年の類体論の論文「相対アーベル数体の一理論について」によりクロネッカーの青春の夢は完全に解決しました。

URLリンク(www.toyokeizai.net)

819:809
10/04/25 08:19:33
>>817
そんなのは百も承知。
やれば出来るとわかったわけだがら類体論の後も研究に力を入れようと考えるのが
良識ある考えというか自然な考えだろ。
それをせずに逆戻りって子供じゃないんだから。
だからトラウマ説をあげた。

820:132人目の素数さん
10/04/25 10:43:57
ウマシカ説に決定です

821:132人目の素数さん
10/04/25 22:18:45
リストラ説は無いだろうな。

822:132人目の素数さん
10/04/27 17:26:50
つまり高木の後継者がダメだったということだな
。。。

823:132人目の素数さん
10/04/28 15:49:41
なさけないな

824:132人目の素数さん
10/04/29 15:04:52
>>811
んなこたぁない。どっちも正当。国語辞書で調べろ。


最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4988日前に更新/168 KB
担当:undef