面白い問題おしえて〜な 十二問目
at MATH
[
2ch
|
▼Menu
]
■コピペモード
□
スレを通常表示
□
オプションモード
□このスレッドのURL
■項目テキスト
931:132人目の素数さん 07/05/24 14:06:06 >>927 良問。 オリジナル? 932:132人目の素数さん 07/05/24 18:52:34 >>931 Digit Sum -- from Wolfram MathWorld http://mathworld.wolfram.com/DigitSum.html 933:132人目の素数さん 07/05/24 23:44:26 2進法展開の場合を計算したらlog4になった。計算の方針は、 f(x)=Σ[k=1〜∞]t(k)x^(k−1) (0≦x<1) とおき、これを別の計算によって簡単な形にする。その結果は f(x)=1/(1−x^2)+{1/(1−x)}Σ[k=1〜∞]{x^(2^k−1)}/{1+x^(2^k)} となる(計算は略)。この式から、 Σ[k=1〜∞]t(k)/{k(k+1)}=∫[0,1]∫[0,t]f(x)dxdt=∫[0,1](1−x)f(x)dx =∫[0,1]1/(1+x)+Σ[k=1〜∞]{x^(2^k−1)}/{1+x^(2^k)}dx =log2+Σ[k=1〜∞](log2)/2^k =log4 になる。積分とΣの順序交換についても確認が必要だが、面倒くさいのでここでは書かない。 10進法の場合も似たような計算かな? 934:132人目の素数さん 07/05/25 00:00:17 マテよ、Σ[k=1〜∞]t(k)/{k(k+1)}=∫[0,1]∫[0,t]f(x)dxdt=… という形で 計算するより、Σ[k=1〜∞]t(k)/{k(k+1)}=lim[y↑1]∫[0,y](1−x)f(x)dx=… の形で計算した方が安全だな。
次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
レスジャンプ
mixiチェック!
Twitterに投稿
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch
4921日前に更新/225 KB
担当:undef