代数的整数論 at MATH
[2ch|▼Menu]
689:208
05/11/07 09:58:44
補題
A を単項イデアル整域、p を A の素元、M を p-加群(>>680)
とする。 x を M の元でその指数 n が M の元のなかで最大のもの
とする。N = Ax とおく。M/N はあきらかに p-加群である。
y を M の任意の元とする。y (mod N) の M/N における指数(>>681)を
m とすると、M の元 z で、その指数が m となり、y = z (mod N) と
なるものが存在する。

証明
まず、y の指数は m 以上だから m ≦ n に注意する。
(p^m)y = tx となる t ∈ A がある。
(p^n)y = (p^(n-m))tx = 0 であるから、
(p^(n-m))t = sp^n となる s ∈ A がある。
両辺を p^n で割ると、tp^(-m) = s
よって、t = s(p^m)
(p^m)y = tx だから、(p^m)y = s(p^m)x
よって、(p^m)(y - sx) = 0 となる。
z = y - sx とおけばよい。
何故なら、z の指数が m より小さいとすると、
y (mod N) の指数も m より小さいことになって矛盾。
証明終


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4863日前に更新/321 KB
担当:undef