代数的整数論
at MATH
565:208
05/10/27 10:20:39
命題
p を素数とし、a ≠ 0 (mod p) とする。
このとき、a は mod p で可逆である。
つまり、ax = 1 (mod p) となる x がある。
証明
(a, p) = (r) となる r > 0 がある(>>564)。
p は素数だから r = 1 でなければならない。
つまり、ax + py = 1 となる x, y がある。
よって、ax = 1 (mod p)
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4872日前に更新/321 KB
担当:undef