代数的整数論
at MATH
455:208
05/10/20 14:48:43
Krullの次元定理
A をネーター環、I をそのイデアルで、r 個の元 x_1, ... , x_r
で生成されるものとする。p を I を含む素イデアルの中で極小な
ものとすると、ht(p) ≦ r である。
証明
A を A_p で置き換えて、A は局所環で、p はその極大イデアル
としてよい。>>454 より dim(A) ≦ dim(A/I) + r である。
I を含む素イデアルは、p だけだから、dim(A/I) = 0 である。
よって、dim(A) ≦ r である。
あとは、dim(A) = ht(p) に注意すればよい。
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4872日前に更新/321 KB
担当:undef