代数的整数論
at MATH
360:208
05/10/18 16:55:47
命題
A をネーター環、p を A の素イデアルとする。
φ: A → A_p を標準射とする。
∩p^(n) = Ker(φ) である。
ここで n はすべての正の整数を動く。
証明
∩p^(n) = ∩φ^(-1)(p^nA_p) = φ^(-1)(∩p^nA_p)
ここで、∩p^nA_p = 0 である(>>252)。
よって、∩p^(n) = φ^(-1)(0) = Ker(φ)
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4854日前に更新/321 KB
担当:undef