代数的整数論
at MATH
336:208
05/10/18 09:47:16
命題
A をArtin環とし、J を A の J-根基(>>238)とする。
J はべき零となる。
証明
A-加群の降列
J ⊃ J^2 ⊃ ... ⊃ J^n ⊃ ...
は途中で停滞するから、J^n = J^(n+1) となる整数 n > 0 がある。
N = J^n とおく。N^2 = N である。
N ≠ 0 として矛盾を導けば証明が終わる。
NI ≠ 0 となるイデアル I の集合 S を考える。N^2 = N だから、
N ∈ S だから S は空でない。よってこの集合に極小なものがある。
それを I とする。NI ≠ 0 だから Na ≠ 0 となる I の元がある。
I の極小性より、I = aA である。(N^2)a = Na だから、
Na ∈ S であり、Na ⊂ aA より再び I の極小性より Na = aA
となる。よって x ∈ N で xa = a となるものがある。
(x^2)a = xa = a を繰り返して (x^n)a = a が任意の n > 0 で
成立つ。
一方、N ⊂ J であり、J = nil(A) でもあるから(>>296 と >>163)、
x はべき零である。よって a = 0 となって矛盾。
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4861日前に更新/321 KB
担当:undef