代数的整数論 at MATH
[2ch|▼Menu]
286:208
05/10/17 12:30:31
定理(Jordan-Holder)
A を環、M を A-加群とする。
M = M_0 ⊃ M_1 ⊃ M_2 ... ⊃ M_n = 0 を組成列とする。
M の任意の組成列の長さは n であり、その剰余群の列は、
順序を別にして 列 (M_i/M_(i+1)) と同型である。

証明
n に関する帰納法。
M = N_0 ⊃ N_1 ⊃ N_2 ... ⊃ N_m = 0 を別の組成列とする。
M_1 ∩ N_1 は補題(>>284)より長さ ≦ n-1 の組成列を持つ。
これと、帰納法の仮定を使えばわかる。
詳しくは読者に任す。


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4858日前に更新/321 KB
担当:undef