代数的整数論
at MATH
237:208
05/10/13 12:42:13
>>236の補題の証明
上の関係式を行列記法で書くと、TX^t = 0 となる。
ここで、 X = (x_1, x_2, ... , x_n)
X^t は X の転置行列。
T~ を T の余因子行列とする。
線形代数でよく知られているように
T~T = det(T)E となる。ここで、E は n-次の単位行列。
よって、T~TX^t = det(T)X^t = 0 となる。
つまり、det(T)x_i = 0 が各 i で成立つ。
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4855日前に更新/321 KB
担当:undef