代数的整数論 at MATH
[2ch|▼Menu]
186:208
05/10/03 11:38:28
A をネーター環、M を A-加群、(M_i) を M の部分加群の族で、
M = ΣM_i (直和)とする。このとき、 Ass(M) = ∪Ass(M_i) となる。

証明
>>184より(M_i)は有限個の族、特に2個の場合を証明すればよい。
M = M_1 + M_2 (直和)とする。
>>185 より、Ass(M) ⊂ Ass(M_1) ∪ Ass(M_2) となる。
逆の包含関係は明らか。
証明終


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4861日前に更新/321 KB
担当:undef