代数的整数論
at MATH
146:208
05/09/27 12:17:37
A をネーター環とし、Mを A-加群とする。
p を Supp(M) の極小元とすると、p ∈ Ass(M) となる。
証明
M_p は空でないから、>>90より Ass(M_p) は空でない。
Ass(M_p) は Spec(A_p) の部分集合であり、Spec(A_p) は
{q ∈ Spec(A); q ⊂ p} と同一視される(>>81)。
pの極小性より、Ass(M_p) = {pA_p} となる。
一方、>>95より、この同一視により Ass(M_p) = Ass(M) ∩ Spec(A_p)
となる。よって、p ∈ Ass(M) となる。
証明終
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
4861日前に更新/321 KB
担当:undef