代数的整数論 at MATH
[2ch|▼Menu]
145:208
05/09/27 10:38:01
>>85の証明をする。

命題
A を環とし、MをA-加群とする。
SをAの積閉集合とする。
M_S = M(x)A_S と定義する。
ここで、M(x)A_S は M とA_Sの A 上のテンソル積。
M_S は A_S-加群となる。M_S を M[1/S] と書くこともある。
x ∈ M, s ∈ S のとき、x (x) (1/s) を x/s と書く。
x/s = 0 とすると、ある t ∈ S があり、tx = 0 となる。

証明
x/s = x (x) (1/s) = 0 より、x/1 = x (x) 1 = 0 となる。
>>144 より、A_S のA-加群としての有限生成部分加群 N で
1 を含み、M (x) N の元として x (x) 1 = 0 となる。
N の生成元を、a_1/t_1, ... , a_r/t_r とする。
t_1, ..., t_r の積を t とすれば、N ⊂ A(1/t) となる。
I = {a ∈ A; ある s ∈ S に対して sa = 0} と定義すると、
I は A nのイデアルである。
a ∈ A のとき、a/t = 0 となるのは、sa = 0 となる s ∈ S
があるときに限る。つまり、a ∈ I である。
A-加群としての射 f: A → A(1/t) を、f(a) = a/t で定義する。
この射の核は、I に他ならない。f は明らかに全射だから、
A(1/t) は A/I と同型である。よって、 M (x) A(1/t) は
M (x) (A/I) = M/IM に同型である。この同型により、
x (x) 1 = x (x) (t/t) は tx mod IM に移る。
x (x) 1 = 0 だから、tx ∈ IM となる。よって、tx = Σ(a_i)(m_i)
となる、有限個の a_i ∈ I と m_i ∈ M がある。
すべての a_i に対して sa_i = 0 となる s ∈ S がある。
この s により stx = 0 となる。
証明終


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4857日前に更新/321 KB
担当:undef