★東大入試作問者にな ..
[2ch|▼Menu]
792:132人目の素数さん
04/10/22 23:00:19
次の性質を満たす正の実数 p がある.

任意の正の整数 n に対して,
a_n=(p−1−1/1!−1/2!−...−1/n!)・(n+1)!
で定まる数列 {a_n} について 0<a_n<3 が成り立つ.

このとき,任意の 0 でない有理数 q に対して,
p^q は無理数となる事を示せ.
ただし,題意を満たす p,{a_n} の存在は既知としてよい.


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

5368日前に更新/248 KB
担当:undef