面白い問題教えて at MATH
[2ch|▼Menu]
283:132人目の素数さん
01/04/19 06:33
>>282
あり得ないよ。
12個のうちどれが軽いか重いかで、24通りの結論があり得る。
天秤は一回あたり、右に傾く、左に傾く、釣り合うの3通りしかない。
よって、2回では、3^2=9 通りの結果しか判別できない。

金貨が、3^n 枚の時は、n+1 回が答えになる。
3^n<2(3^n) より、n 回で不可能なことは上に書いたことと同様。
n+1 回で可能なことは、n についての帰納法による(金貨を3枚ずつ一組にすると考えれば容易)。

一般に、金貨 n 枚の時、3^(k-1)<2n≦3^k となる k をとれば、答えは k 回でいいのかな?
k 回必要なことはわかるけど、k 回で可能かどうかわからない。


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

5208日前に更新/243 KB
担当:undef