この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。(2014年4月)
この項目では、主としてユークリッド幾何学における距離について説明しています。一般化した距離については「距離空間」を、競馬での距離の説明については「距離 (競馬)」を、スキー競技については「クロスカントリースキー」をご覧ください。
距離(きょり、独: Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。
目次
1 日常生活における用法
2 ユークリッド幾何学の距離
2.1 2点間の距離
2.2 2点間以外の距離
3 より専門的な距離
4 参考文献
5 注
6 関連項目
具体的な距離の定義は1つでなく、直線距離を指して距離ということもあれば、高速道路のインターチェンジ間の距離や陸上競技のトラック競技において用いられる距離のように、特定の経路に沿って測った長さを指すこともある。前者について特に距離と呼び、後者については道程(みちのり)と、こだわる向きも一部に見られることがあるが、マンハッタン距離といった言葉もあり、特にこだわるべきものではない。とりうる経路が複数ある時に、その中で距離の最小(あるいは下限)値を最短距離といい、最短距離を実現する経路を最短路という。 本節は高校数学で習うユークリッド幾何学での距離について触れる。 1次元空間の2点間の直線距離は以下の通り。 。 x 1 − x 2 。 {\displaystyle |x_{1}-x_{2}|} 2次元空間の2点間の直線距離は以下の通り。 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 {\displaystyle {\sqrt {(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}} 3次元空間の2点間の直線距離は以下の通り。 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 {\displaystyle {\sqrt {(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}}} ある2点間を(道路状態や地形、建築物等を一切無視し)直線状に測ったときの長さを直線距離という。このとき直線距離は2点間における最短の長さ、即ち最短距離であり、これ以外の方法を用いて2点間の長さを測定しても、直線距離より短くなることはない。 3次元空間において、球面上の異なる2点を結ぶ直線は必ず球体の内部を通る。実際は地球は球体ではないが球体であるとすると、地球上の2点を結ぶ直線も地球内部を通る[1]。通常は地球上の距離は大圏コースによって地表を通る曲線の長さを距離とする。 点から[[直線]]までの距離、あるいは点と直線との間の距離とは、その点から直線へ下した垂線の長さを指す これは、その点と直線上にとった点との距離の中で最短の距離であり、点を中心として描いた直線の接円の半径に等しい。三角形の場合、頂点から対辺を含む直線までの距離を高さと呼ぶ。また同様に、点から平面までの距離、あるいは点と平面の間の距離を、点から平面へ下した垂線の長さで定義する。これは、点と平面上の点との距離の中で最短の距離であり、点を中心とした球のうち、平面に接するものの半径に等しい。4次元以上のユークリッド空間内での3次元以上の超平面と点との距離も同様である。 2本の平行線のうち一方の直線上の点と他方の直線との距離(垂線の長さ)は全て等しく、この長さを2本の平行線の間の距離という。平行な2平面の間の距離も同様に定義できる。 [ヘルプ] ウィクショナリーに距離 ウィキメディア・コモンズには、距離
日常生活における用法
ユークリッド幾何学の距離
2点間の距離
2点間以外の距離
より専門的な距離「距離空間」を参照
参考文献が望まれています。
シンキロウ、2011、『距離のノート』初版、 暗黒通信団 ISBN 978-4-87310-158-3
注
^ 具体的には、どれくらい細かく見るかによる。地球の場合、数百メートル離れると、ミリメートル単位では地下を通る。
関連項目
長さの比較
最短経路問題
速度
距離計
大圏コース
測地線
更新日時:2018年3月16日(金)09:34
取得日時:2018/04/20 14:08
◇ピンチです!◇
■暇つぶし何某■