抗がん剤
[Wikipedia|▼Menu]

この項目では、癌抑制を目的とした薬剤について説明しています。他の疾患の治療を目的とした薬剤全般の情報については「化学療法」をご覧ください。

抗がん剤(こうがんざい、英語: Anticancer drug)とは、悪性腫瘍(がん)の増殖を抑えることを目的とした薬剤である。抗癌剤、制癌剤とも。がんの三大治療である手術化学療法放射線療法のうち化学療法に入る。
目次

1 概説

2 作用機序

2.1 細胞周期と抗がん剤


3 種類

3.1 アルキル化薬

3.1.1 ナイトロジェンマスタード類 (マスタードガスから誘導されたもの)

3.1.2 ニトロソウレア類


3.2 白金製剤

3.3 代謝拮抗剤

3.3.1 葉酸代謝拮抗薬

3.3.2 ピリミジン代謝阻害薬

3.3.3 プリン代謝阻害薬

3.3.4 リボヌクレオチドレダクターゼ阻害薬

3.3.5 ヌクレオチドアナログ

3.3.6 その他の代謝拮抗薬


3.4 トポイソメラーゼ阻害薬

3.5 微小管重合阻害薬

3.6 微小管脱重合阻害薬

3.7 抗腫瘍性抗生物質

3.8 分子標的薬

3.9 内分泌療法

3.10 ワクチン療法

3.11 ウイルス療法


4 問題点とその対応

5 脚注・出典

概説

抗がん剤を用いた療法は、「化学療法」に分類されている。
作用機序

抗がん剤の作用機序としては、DNA合成阻害、細胞分裂阻害、DNA損傷、代謝拮抗、栄養阻害などがある。

腫瘍細胞はいくつかの種類のものが混在しており、さらに耐性を得やすい。抗がん剤の持つ毒性のため投与量に制限があることが多く、単剤投与は失敗に終わることが多いため、一般に多剤併用療法となる。多剤併用療法であっても、やみくもに組み合わせればよいというものではなく、いくつかの重要な経験則がある。標的とする分子が異なる薬物、有効とされる細胞周期の時期が異なる物質、用量規定毒性が異なる薬物を併用するのが一般的である。さらにできるだけ相乗効果(シナジー)を得られる投薬を工夫する。このようにすることで、結果として最小の毒性で最大の結果が得られると考えられている。また、近年は支持療法の進歩で、多くの抗がん剤において最大耐容量をさらに増やすことができるようになったということが注目に値する。G-CSFの投与によって骨髄抑制の回復を図る時間を短く取ることができ、アロプリノールの投与によって、腫瘍融解症候群を抑制し、全身合併症を減少させることができるようになった。フォリン酸(ロイコボリン)の投与によってメトトレキサートの大量投与が可能になった。またフォリン酸フルオロウラシルの併用がフルオロウラシル単独投与よりも治療効果が高いということも分かってきた。また急性嘔吐の治療薬が開発されることにより、治療中も食事摂取が可能な場合が増えてきたといったことが挙げられる[※ 1]

感染症治療と抗がん剤投与が原理がほぼ同じであるため、感染症学で多用されるPD(薬力学)、PK(薬物動態学)といった概念は腫瘍学でも有効であり、抗がん剤にもシナジーは存在し、脳腫瘍では血液脳関門があるため使用薬剤は制限される。抗菌薬投与で髄液移行性が問題となったように、脳腫瘍に有効な抗がん剤は極めて少ない。非ホジキンリンパ腫は基本的にR-CHOP療法で治療されることが多いが、病変が脳の場合はR-CHOP療法は有効でなく、HD-AraCやHD-MTXといった治療が選択される。

がん細胞は細胞周期が速く進む(分裂が速い)といったところを標的にすることが多いが、アポトーシス感受性の違いも重要なターゲットとなる。細胞周期がターゲットとなると、骨髄や消化管上皮、毛包といった細胞周期が早い正常細胞も攻撃される。抗がん剤で必発と言われる症状は骨髄抑制、悪心、脱毛である[※ 2]
細胞周期と抗がん剤

前述のように、抗腫瘍薬は異なる細胞周期に働きかけるもの、用量規定因子が異なるもの、作用する部位が異なりシナジーを得られるものを組み合わせて作られている。ある程度の理論的背景は存在する(ただし、薬剤が実際に有効なのか、あるいは効果がないのかという点については、実際に疫学的な調査を行ってみるまで判らない。つまり根拠に基づく医療によってなされなければならない)。

細胞周期はDNAを合成するS期、有糸分裂をするM期に分かれる。細胞が分裂し、DNAの合成が始まるまでをgap1 (G1) といい、DNAの合成が終了し有糸分裂が始まるまでをgap2 (G2) という。これらはサイクリンとサイクリン依存性キナーゼによって調節されており、これらを監視する系に数多くのがん抑制遺伝子が存在する。原則としてはアルキル化薬は細胞周期非依存性に働き、それ以外は何かしら周期に特異的に働く。傾向としてステロイドはG1に働き、代謝拮抗薬やトポイソメラーゼ阻害薬はDNA合成のS期に働く、ビンカアルカロイド系など微小管機能阻害薬はM期に働く。基本的に用量規定因子は骨髄抑制であることが多く、それゆえに骨髄機能を温存するために間欠的スケジュールで投与する場合が多い。
種類

主な抗がん剤は以下に大別される。DNA合成あるいは何らかのDNAの働きに作用し、作用する細胞周期をもって分類する。この項では抗がん剤の類縁物質は抗がん剤として使われない薬物でも記載する。傾向としては抗菌薬の類縁物質は抗がん剤としても利用可能なことが多い。

アルキル化薬 (alkylating agents)

白金化合物

代謝拮抗薬 (anti-metabolites)

トポイソメラーゼ阻害薬

微小管阻害薬

抗生物質

アルキル化薬

アルキル化薬は細胞内条件下で、種々の電気陰性基をアルキル化することからその名称がつけられた。アルキル化剤は直接DNAを攻撃して二重鎖のグアニン塩基同士を架橋することで腫瘍の増殖を停止させる。架橋によりDNAは一本鎖になったり分離することができなくなる。二重鎖が解けることはDNAの複製に必須のため、細胞はもはや分裂することができなくなる。
ナイトロジェンマスタード類 (マスタードガスから誘導されたもの)

シクロホスファミド(CPA エンドキサン)

イホスファミド(IFM イホマイド)

メルファラン(L-PAM アルケラン)

ブスルファン

チオテパ(TEPA テスパミン)

これらはアルキル基を有する求電子性分子であり、このアルキル基がDNAの求核性部位と間に共有結合を形成する。これによりDNAを周期非特異的に傷害する。最もよく使われるのがシクロホスファミドであるが、用量規定毒性は骨髄抑制である。有名な副作用に出血性膀胱炎があるが、メスナ(ウロミテキサン)にて予防がある程度可能である。また、シクロホスファミドを始めとするアルキル化薬は免疫抑制薬として用いられることもある。この場合は抗腫瘍薬としてよりも低用量である。
ニトロソウレア類

ニムスチン(ACNU ニドラン)

ラニムスチン(MCNU サイメリン)

ダカルバジン(DTIC ダカルバジン)

プロカルバシン(PCZ 塩酸プロカルバシン)

テモゾロマイド(TMZ テモダール)

カルムスチン(BCNU ギリアデル)

ストレプトゾトシン(STZ ザノサー)

ベンダムスチン(トレアキシン)

いずれも悪性リンパ腫や慢性骨髄性白血症で用いられることがある。ニトロソウレア類は中枢神経の移行もよく、脳腫瘍に用いられることがある。
白金製剤


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:55 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:FIRTREE