寿命
[Wikipedia|▼Menu]
2011年時点での各国の平均寿命グラフ(円の大きさ=人口)

寿命(じゅみょう)とは、がある間の長さのことであり、生まれてから死ぬまでの時間のことである。転じて、工業製品が使用できる期間、あるいは様々な物質・物体の発生・出現から消滅・破壊までの時間などを言うこともある。
目次

1 言葉としての一般的用法

2 生物学的用法

2.1 細胞の分裂回数の限界

2.2 寿命の意義

2.3 心拍数説

2.4 休眠がある場合

2.5 ルブナーの法則

2.6 寿命伸長の可能性


3 人間の寿命

3.1 平均寿命

3.2 国別平均寿命ランキング

3.3 最長の人間の寿命


4 脚注

5 参考文献

6 関連項目

7 外部リンク

言葉としての一般的用法

一般には、人間が生まれてから死ぬまでの時間のことを寿命という。この長さには非常に個人差があり、生まれてすぐ死ぬ人間もいれば、100年以上生きる人間もいる。しかし、あまりに短い場合、大抵は事故であったり、病気であったりと不本意な理由があるから、「あれさえなければもっと生きていたろうに」というふうに考えるものである。したがって、人間は特に問題がなければ老人になって衰えて死ぬものだとの考えから、老衰で死ぬことを寿命と言うことが多い。100歳の人が死ねば、大抵は「寿命だからね」と言われる。

言葉としては、寿命が短いことを短命(たんみょう・たんめい)、長いことを長命(ちょうみょう・ちょうめい)という。もちろん相対的な概念であり、絶対的な区別はない。短命に終わることを、夭折という。
生物学的用法

この節は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2017年1月)

生物学における寿命には2つの考え方がある。たとえばアユ海水で育てると2年以上生き延びることが知られている。そこで、アユの寿命は実は2年くらい、というのは確かに正しいのであるが、実際の河川では、アユはほぼすべて1年で死ぬ。一年草も自然条件では1年で開花・結枯死するが、開花条件を満たさなければ何年も生きるものが多い。つまり、アユや一年草の寿命は1年とも、2年(もしくはそれ以上)ともいうことができる。そこで、条件を整えてやった場合に実現する寿命を生理的寿命、その生物が実際に生活している場で見られる寿命を生態的寿命として区別する。我々の見る一般的な動物個体老化して死に、人間と同じように生理的・生態的寿命を考えることができる。ただし、生物界全体を見渡した場合、生理的寿命があるものはむしろ少数派である。属する種の過半数に生理的寿命があるものは動物だけといってよく、動物の中でも海綿動物腔腸動物扁形動物では生理的寿命は認められていないものが多数を占める。
細胞の分裂回数の限界

一般に単細胞生物には寿命の概念がない。ただし例外的に繊毛虫ゾウリムシの仲間)では分裂後の隔離を繰り返して自家生殖接合を行わせないと細胞分裂ができなくなる現象が起こる。パン酵母にも同様の現象がある。同じく動物の一部種(おそらくは脊椎動物)の正常な体細胞では一定回数以上分裂できない現象がある。これらの動物体細胞では細胞分裂時に短くなる染色体上のテロメアと呼ばれる配列を延長できず、ある程度以上テロメアが短くなれば分裂できなくなる。これを動物ではヘイフリック限界といい、生理的寿命の原因ではないかとされている。よく誤解されるが原核細胞(細菌・古細菌)、多くの動物以外の真核細胞および動物の生殖細胞細胞、動物でも海綿動物腔腸動物扁形動物の細胞ではこのヘイフリック限界のような現象は認められず、無限に分裂できる。もちろん、これらの分類群の中にも上記の繊毛虫や酵母のように明確に分裂回数が有限であるものも存在する。ゾウリムシ[1]でもパン酵母[2]でもテロメアは分裂回数の限界には関わってないことが示されているが、動物の老化時と共通した遺伝子発現もあり、分裂回数の有限性は動物の体細胞とは独立に獲得された似た現象であるのか、元々共通した現象であるのかは現段階では不明である。

ヒトの細胞の分裂限界(PDL:population doubling level)(=ヘイフリック限界)は50で最大寿命は約120年、ウサギではPDL20で最大寿命は約10年、ラットではPDL15で最大寿命は約3年で、PDLと最大寿命とが直線的な関係がみられる[3]
寿命の意義

この節は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2016年3月)

動物などにおける寿命の進化要因は現在論争中で、充分に説得力のある仮説はない。しかし、以下の仮説がある。議論する上でよく有性生殖の意義との混同が起きるが、全く別のものである。有性生殖またはそれに当たる遺伝子交換は多くの生物で認められ、真核生物では認められないものの方が少数である点も寿命とは異なる。
個体使い捨て説
生理的寿命がある生物は体が複雑であるものが多い。動物でも体制が簡単な海綿と腔腸動物には生理的寿命が認められないものが多い。生理的寿命が認められるゾウリムシは単細胞生物としては異例の複雑かつ巨大な体を持っている。ここから、複雑な体はある程度以上壊れる(老化する)と当該個体の修復よりも新個体の生成のほうがコストが少ないため、個体(ゾウリムシの場合は大核)を捨ててしまうという説。上記のゾウリムシにおける無限に分裂ができる系統では定期的に大核の廃棄および再構成(オートガミー)がなされている。多くのゾウリムシ系統はこの廃棄と再構成が接合とリンクしているため接合がない場合は分裂能を失ってしまう。ただし、体制が単純な酵母などにも寿命があることがこれでは説明が付かない。
テロメア
動物(おそらくは脊椎動物のみ)の生理的寿命だけに成り立つ論であるが、細胞分裂のたびに染色体の端にあるテロメアが短くなり、ある程度以下になると細胞分裂できなくなる現象から。しかし、これは(他の真核生物は保持している)テロメラーゼを失うことにより動物が生理的寿命を設定している、という方が正しい可能性があり、原因と結果をはき違えている、という意見がある。また、脊椎動物でもテロメラーゼ活性が程度の差はあれ、認められる種も確認されている。
偶然説
祖先種においてたまたま(生理的)寿命があるものができ、それが特に(遺伝子の)生存に不利でなかったためたまたま創始者効果で広まったという説(つまり寿命に意義はない)。この例としては一年生(一回開花性)草本の寿命が上げられる。一年生草本では開花条件を満たすと開花結実し枯死するが、開花条件を満たさないと生存に適当な環境では長期間生残するもの(つまり生理的寿命が認められない。例:アサガオコリウスの多く)と、開花に不適な条件でも展葉枚数(葉齢)が一定数以上に達すると開花結実枯死のプロセスが止まらなくなるもの(つまり生理的寿命がある。例:シロイヌナズナCol-0系統やトウモロコシの多くの系統)がある。自然条件ではどちらも開花条件を満たす→開花枯死となるので生理的寿命の有無は遺伝子の生存や増加にはほとんど影響を及ぼさないであろう。上記のゾウリムシやパン酵母の例でも生存(分裂)に適した条件で接合相手が居ないことはごく低確率である、パン酵母では分裂した片方の細胞である母細胞は老化するがもう片方の娘細胞は若返る、アユのように動物では生理的寿命は生態的寿命より大幅に長いことが多いなど、生理的寿命の有無や長さは遺伝子の生存や増加には影響を及ぼしていないのではないかと思われる例が多い。ただし、この説では老化課程における遺伝子発現が整然としている、つまり積極的なプロセスに見える事象が多いことが説明が付かない。これに対しては、寿命を獲得した偶然は遺伝子の単なる故障ではないのではないか、という反論がある。例えばホヤ類では岩に固着するホヤ成体には生理的寿命が認められた種はないが、その分散形態であり運動性のあるオタマジャクシのような幼生には生理的寿命がある(時期が来ると岩に固着して変態し、脊索その他運動に必要な部分を捨て去る)。この変態はもちろん積極的な整然とした遺伝的プロセスであろう。その幼体が幼形成熟により、運動性形態のまま性成熟するようになったものがオタマボヤではないかとされている。そして同じ脊索動物(尾索動物)でありながらオタマボヤには生理的寿命がある。オタマボヤ脊椎動物に非常に近縁とされ、全ての脊椎動物には生理的寿命があるとされている。上記から、脊椎動物に生理的寿命があるのは祖先となったホヤ幼生の運動部分に寿命があったためという偶然と創始者効果のためであるという仮説が成り立つ(ただし、それぞれの分類群の分岐や着生ホヤの生理的寿命の有無を含め異論が多いことに注意)。老化→死に至る遺伝的なプロセスに整然としている部分が多いことも説明が付く。この仮説に従えば、上記の一年草の生理的寿命(開花スイッチが葉齢によっても入るようになっただけ)はもちろん、動物の別の分類群、例えば昆虫などの節足動物脱皮動物)の寿命は別途獲得されたことになる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:32 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:FIRTREE