国際リニアコライダー
[Wikipedia|▼Menu]

国際リニアコライダー(こくさいリニアコライダー、: International Linear Collider、略称ILC)とは、超高エネルギー電子陽電子の衝突実験をおこなうため、現在、国際協力によって設計開発が推進されている将来加速器計画

日本では、1990年代はじめより、高エネルギー加速器研究機構を中心として、初期に「Japan Linear Collider」と呼ばれ、アジア各国物理学者の参加を得て「Global Linear Collider」へと名称変更され開発が進められてきた構想があった。同時期より、ヨーロッパドイツ電子シンクロトロン欧州原子核研究機構)、北アメリカSLAC国立加速器研究所)でも類似の計画が構想され、開発に従事する研究者間で、隔年の研究ワークショップが開催されてきた。

国際リニアコライダーは、2004年8月に「国際技術勧告委員会(: International Technology Recommendation Panel (ITRP))」が加速器の基本技術を一本化する勧告[1]を行ったのを受け、これらの構想が世界で1つの計画、「International Linear Collider (ILC)」に統合されたものである。

2017年現在、2025年完成を目指して議論が行われている。


目次

1 概論

2 これまでの進展

3 今後

4 将来

5 関連研究所

6 公式サイト

7 公式SNS

8 関連項目

8.1 研究課題

8.2 装置

8.3 関連人物

8.4 国際リニアコライダーを扱った番組


9 脚注

10 外部リンク


概論

電子-陽電子衝突型の加速器で、最高のビームエネルギーを記録したのは2000年までCERNで稼働したLEP-II (209GeV) であり、最大のルミノシティ値を持っていたのは、2010年まで高エネルギー加速器研究機構で運転したKEKBである。CERNでは、LEP実験が終了し、LHC実験(陽子-陽子衝突型)へと移行し、2008年9月10日にその初期運転が、また2010年3月から本格実験が始まっている。

陽子-陽子もしくは陽子-反陽子衝突型の実験(ハドロン型とも呼ばれる)では、陽子、反陽子など複合粒子であるハドロン内部にあるクォーク同士の反応が複数並行して起こるなかで、多数の終状態粒子が発生する。そのため、どの終状態粒子がどのようなエネルギーのどのクォーク反応に由来したかの不確定性が常に伴い、データの選別と統計的分析に大きな労力と解析計算を必要とする。

一方、電子-陽電子の衝突実験(レプトン型とも呼ばれる)では、始状態での電子と陽電子のエネルギーが全部集約され、終状態粒子はすべてそこから生成される。したがって、バックグラウンド事象の排除が容易で、データ解析が比較的簡便、という利点がある。そのため、TeVクラスのレプトン衝突型実験を行おうという計画が、各地の物理学研究者の間での共通の夢であり目標でもあった。

「加速器基本技術の一本化」とは、常伝導型の加速空洞と超伝導型の加速空洞との開発研究の比較の結果、超伝導型の加速空洞の方が、空洞内で発生するウェーク場が比較的弱いためビーム品質を保ったまま大電流のビーム加速を行ううえで有利であること、空洞のQ値が高い(空洞内に高周波電力の共鳴状態をいったん発生したあとの減衰スピードがゆっくりである)ため、比較的低いピーク電力の高周波源で運転が足り、電力パルス長は増やす必要があるもののピーク電力を増やすよりは楽、などの点で評価され、決定されるに至ったものである。

KEKB実験にも記載があるように、電子-陽電子衝突を行う貯蔵リングタイプの加速器では、ビームエネルギーが大きくなるとシンクロトロン放射によるビームエネルギーの損失が急激に増大し、したがって加速電力を生成する装置の費用また電力経費が急激に増大する。これを緩和するには、リングの軌道曲率半径を大きくする必要がある。建設費用を最小にする設計最適化を行うと(貯蔵リングの総延長に比例するコストと必要加速電力に関係するコストの和をなるべく小さくする、ということである)、リングの大きさはビームエネルギーの二乗に比例することがわかっている。一方、リニアコライダーの建設費用は、おおむね線形加速器の総延長に比例するが、これは最終ビームエネルギーに比例することを意味する。これらは概念的なコストスケール則であって、コスト算出の詳細は当然具体的設計に依存するが、現在までの評価によれば、重心系エネルギー約200GeVで運転したCERNのLEP電子陽電子加速器を大幅に超えるエネルギーを電子陽電子衝突で目指すならば、リニアコライダーが必要、というのが関係研究者間の世界的了解事項である。それであっても、TeVクラスの重心系エネルギーを実現するためには、30kmを超える直線トンネルが必要となる。実際には、リニアコライダーの加速器施設の大部分は地下に建設され、とくに大深度トンネルを使った場合には地上用地取得の規模は限定的となるが、環境アセスメントなどにおいて十分な検討と準備が必要であることは従来の加速器施設と同様またはそれ以上となる。
これまでの進展

線形加速器の基幹技術を超伝導高周波空洞に拠ることを決めた2004年の研究者間国際合意を踏まえ、2005年に加速器設計のための ⇒国際協力チーム (GDE) が立ち上げられた。GDEは、 ⇒ICFA(International Committee for Future Collider - 世界各地の主要加速器研究所所長と研究代表者で構成される)の下部組織の一として位置づけられており、その統括責任者はICFAのもとの ⇒国際リニアコライダー執行推進委員会 (International Linear Collider Steering Committee) に任命されている。GDEの中枢メンバー名簿に載っているのは約60名であるが、世界の100以上の研究所と大学から数百名の加速器専門家、技術者、高エネルギー物理学研究者が参加し、国際リニアコライダー (ILC) の設計と技術開発の作業を行っている(ILCでの実験について準備検討を行っている実験物理学者を加えるならば、関連研究者総数は一千名を大きく越える -- おそらく二千人弱 -- と推計される)。

GDEによる、国際リニアコライダーの現在の ⇒設計構想は、 ⇒国際リニアコライダーサイトに見ることができる(縦横ほかの実際の寸法比は異なる)。第一期計画完成時に国際リニアコライダー加速器施設の主体をなすのは、相対するそれぞれ11.3kmの直線状の二本の主線形加速器 (Main Linacs) である。これに延長約4.5kmの最終収束部 (Beam Delivery Systems)、同じく約2.6kmのビームバンチ圧縮部 (Bunch Compressors)、ビームエミッタンス減衰リング (Damping Rings) などを加えて、加速器施設で必要な立地は総延長約31kmの細長いものである。主線形加速器をはじめとする大部分の設備は地下施設に納められるが、中央の実験設備に対応する箇所を含め、約2.5kmの間隔で地上地下をつなぐ連絡路が設けられ、対応する地上部分に機材搬入口および各種の所要建屋が設けられる。加速器施設の中央部分にはビーム衝突点 (Beam Collision Point) がもうけられ、二つの実験装置 (Detectors) を交互にビーム衝突点に据え付けて実験を行う。

主線形加速器には平均31.5MV/mの加速勾配で稼働する超伝導空洞(一個の長さ約1m)が総数約16,000台据え付けられる。付帯設備として、L-バンド1.3GHzのマイクロ波源、空洞を絶対温度2Kまで冷却するための冷凍施設、各種電源、制御機器が必要となる。最高ビームエネルギーはそれぞれの主線形加速器から250GeV。これらからのビームが正面衝突するので、ビーム衝突時の重心系エネルギーは最大値500GeVに到達し、前出CERNのLEP-II加速器で実現された重心系エネルギーの2倍を優に超えるものとなる。加速器施設全体の所要電力は約240MWに上ると見積もられる。

このような設計構想に沿い、GDEでは2005-2006年のあいだ加速器設計の現況とりまとめと建設コストの一次評価をおこない、これをICFAに報告した。 ⇒報告書ドラフトと骨子とりまとめは、ICFAおよびILCSCの討議と承認を経て、2007年2月の北京でのICFAの会議のさいに、"Reference Design Report"(略称RDR)として一般に公表され、 ⇒最終印刷物は2007年9月に出版された。それによると、ILC加速器建設に必要な経費は、"ILC value unit" と呼ぶ仮想価値単位にして、トンネルほか立地整備関連に18億ILC-VU、加速器機材関係で49億ILC-VU、と評価されている。また、建設工程に携わる所要マンパワーは2,200万人-時間と積算評価された。なお、通貨に換算すると、1 ILC-VUは2007年はじめ時点の1 US$、0.83 Euro、117円に相当するが、上記評価ではインフレ、税金、間接経費ほかが算入されていない。また、人件費の算出習慣も各国で異なっている。これらのことを考慮した、各国の会計規則に従った見積もりへの換算は、別途行う必要がある。さらに、最終設計に至る間の開発予算、建設後のシステム立ち上げ試験経費、運転経費、また、物理実験用の測定器のための建設費用は別枠となる。

RDRには、加速器の設計とともに、ILCで行われる実験物理の骨子と、そのための実験装置に関する素案も記載されている。実験装置のさらなる開発推進のため、2007年秋にILCSCは、加速器の設計開発を行うGDEと並行し、実験測定器の設計開発をコーディネートする責任者として "Research Director"(略称RD)を選任し、そのもと、世界の関連研究者による作業の組織整備が開始された。

これらの背景のもと、GDEとRD組織は、RDRを加速器と実験測定器の基本骨子文書とし、2008年よりEngineering Design活動を始めることを企画して、2010年ころまでの実機への適用可能性のデモを目指す高度R&Dと、詳細なシステム工学設計の完成にむけた作業に乗り出す活動構想を立案した。

ところが、2007年冬にまず英国、次いで米国で、それぞれの監督官庁によってILC関連の開発予算に関する縮減方針が発表された。とくに、それまで加速器・測定器の双方で大きな物的人的予算配分を行ってきた米国監督官庁の方針転換の影響は無視できず、ILC全体としての開発は減速を余儀なくされることとなった。2008年春に再策定されたGDEとRDの活動方針では、加速器についてはRDRをさらに深化し、コスト面の圧縮と技術リスクの低減を図ったTechnical Design Reportを、測定器については加速器のビーム衝突点近傍の設計と整合をとりつつ、二台の相補的特性をもった測定器システムのDetailed Baseline Reportを、それぞれ2012年終わりまでに完成する、とされている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:29 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:FIRTREE