[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 00:36 / Filesize : 288 KB / Number-of Response : 1045
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校数学の質問スレPart404



1 名前:132人目の素数さん mailto:sage [2020/03/30(月) 00:19:50.28 ID:1rX+0Q6A.net]
【質問者必読!!】
まず>>1-4をよく読んでね

数学@2ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
mathmathmath.dotera.net/

・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
 どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
 ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。でないと放置されることがあります。
  (変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。それがない場合、放置されることがあります。
  (特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。

※前スレ
高校数学の質問スレPart403
https://rio2016.5ch.net/test/read.cgi/math/1578601448/

2 名前:132人目の素数さん mailto:sage [2020/03/30(月) 00:20:23.26 ID:1rX+0Q6A.net]
[2] 主な公式と記載例

(a±b)^2 = a^2 ±2ab +b^2
(a±b)^3 = a^3 ±3a^2b +3ab^2 ±b^3
a^3±b^3 = (a±b)(a^2干ab+b^2)

√a*√b = √(ab)、√a/√b = √(a/b)、 √(a^2b) = a√b [a>0、b>0]
√((a+b)±2√(ab)) = √a±√b [a>b>0]

ax^2+bx+c = a(x-α)(x-β) = 0 [a≠0、α+β=-b/a、αβ=c/a]
(α,β) = (-b±√(b^2-4ac))/2a  [2次方程式の解の公式]

a/sin(A) = b/sin(B) = c/sin(C) = 2R [正弦定理]
a^2 = b^2 + c^2 -2bc cos(A)      [余弦定理]

sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)  [加法定理]
cos(a±b) = cos(a)cos(b) 干 sin(a)sin(b)

log_{a}(xy) = log_{a}(x) + log_{a}(y)
log_{a}(x/y) = log_{a}(x) - log_{a}(y)
log_{a}(x^n) = n(log_{a}(x))
log_{a}(x) = (log_{b}(x))/(log_{b}(a))  [底の変換定理]

f'(x)=lim_[h→0] (f(x+h)-f(x))/h  [微分の定義]
(f±g)' = f'±g'、(fg)' = f'g+fg'、(f/g)' = (f'g-fg')/(g^2) [和差積商の微分]

3 名前:132人目の素数さん mailto:sage [2020/03/30(月) 00:20:40.60 ID:1rX+0Q6A.net]
[3] 基本的な記号の使い方は以下を参照してください。その他については>>1のサイトで。

■ 足し算/引き算/掛け算/割り算(加減乗除)
 a+b → a 足す b   (足し算)     a-b → a 引く b    (引き算)
 a*b → a 掛ける b  (掛け算)     a/b → a 割る b    (割り算)
■ 累乗 ^
 a^b     a の b乗
 a^(b+1)  a の b+1乗
 a^b + 1  (a の b乗) 足す 1
■ 括弧の使用
 a/(b + c) と a/b + c
 a/(b*c)  と a/b*c
 はそれぞれ、違う意味です。括弧を多用して、キチンと区別をつけてください。
■ 数列
 a[n] or a_(n)    → 数列aの第n項目
 a[n+1] = a[n] + 3  → 等差数列の一例
 Σ[k=1,n] a_(k)   → 数列の和
■ 積分( "∫"は「せきぶん」「いんてぐらる」「きごう」「すうがく」などで変換せよ(環境によって異なる)唐ヘ高校では使わない)
 ∫[0,1] x^2 dx = (x^3)/3|_[x=0,1]
■ 三角関数
 (sin(x))^2 + (cos(x))^2 = 1     cos(2x) = (cos(x))^2 - (sin(x))^2
■ ベクトル
 AB↑ a↑
 ベクトル:V = [V[1],V[2],...], |V>, V↑, vector(V)
 (混同しない場合はスカラーと同じ記号でいい.通常は縦ベクトルとして扱う.)
■行列
 (全成分表示):M = [[M[1,1],M[2,1],...],[M[1,2],M[2,2],...],...], I = [[1,0,0,...],[0,1,0,...],...]
 (行(または列ごと)に表示する. 例)M = [[1,-1],[3,2]])
■順列・組合せ
  P[n,k] = nPk, C[n.k] = nCk, H[n,k] = nHk,
■共役複素数
  z = x+iy (x,yは実数) に対し z~ = x-iy

4 名前:132人目の素数さん mailto:sage [2020/03/30(月) 00:20:58.74 ID:1rX+0Q6A.net]
[4] 単純計算は質問の前に www.wolframalpha.com/ などで確認

入力例
・因数分解
  factor x^2+3x+2
・定積分
  integral[2/(3-sin(2x)), {x,0,2pi}]
・極限
  limit(t*ln(1+(1/t^2))+2*arctan(t))) as t->infinity
・無限級数
  sum (n^2)/(n!), n=1 to infinity
・極方程式
  PolarPlot[2/sqrt(3-sin(2t)), {t, 0, 2Pi}]

グラフ描画ソフトなど
・FunctionView for Windows
  hp.vector.co.jp/authors/VA017172/
・GRAPES for Windows
  tomodak.com/grapes/
・GRAPES-light for i-Pad
  www.tokyo-shoseki.co.jp/ict/textbook_app/h/003003
・GeoGebra for Windows / Mac OS X
  sites.google.com/site/geogebrajp/

入試問題集
 www.densu.jp/index.htm  (入試数学 電子図書館)
 www.watana.be/ku/    (京大入試問題数学解答集)
 www.toshin.com/nyushi/  (東進 過去問DB)

5 名前:132人目の素数さん mailto:sage [2020/03/30(月) 15:17:58.33 ID:o30xKtxA.net]
イナ ◆/7jUdUKiSM という数学を理解できない荒らしがいるので反応しないようにしましょう
反応する人も数学を理解してない荒らしです

なおこれは暫定のテンプレです
反対意見が万が一あれば議論してください

6 名前:粋蕎 mailto:sage [2020/03/31(火) 04:01:12.65 ID:EDLtMypi.net]
其の前に。激しくガイシュツ問題の魚拓が見付かったんで此ちらにも挙げさせて頂く。
飽く迄も魚拓なんで別途正規に保管して頂きたし。

激しくガイシュツ問題
https://web.archive.org/web/20181107033930/www.geocities.co.jp/CollegeLife-Club/7442/math/index.html

7 名前:132人目の素数さん mailto:sage [2020/03/31(火) 04:51:12.23 ID:uFJUiart.net]
912 132人目の素数さん sage 2020/01/08(水) 07:17:03.75 ID:Cax1/W+U
挟み撃ちは不等式じゃなくて極限に使うんだよ
しかも定理じゃなくて原理

934 132人目の素数さん sage 2020/01/08(水) 16:19:21.47 ID:Cax1/W+U
あのね、高校数学においては教科書が正義なんだよ
どこの馬の骨とも分からないおまいらじゃなくて偉い数学者が監修してる訳だよ
その教科書が原理と書いてるから原理なんだよ
それに文句があるんなら偉い数学者になって監修側にまわれば?

938 132人目の素数さん sage 2020/01/08(水) 21:55:51.79 ID:Cax1/W+U
>>936
そう「質問」スレだよ
何がその前に数学板だよwww
的外れで馬の骨のお前の意見なんてどうでもいいよ

8 名前:132人目の素数さん [2020/03/31(火) 18:55:22 ID:fsm0eVqw.net]
こっちが本スレ

9 名前:132人目の素数さん [2020/03/31(火) 19:24:46 ID:imrQiODe.net]
( ・∀・)< しんすれおめ

10 名前:132人目の素数さん mailto:sage [2020/03/31(火) 19:29:40 ID:YCC1OV1o.net]
次はここを荒らせばいいのか?



11 名前:132人目の素数さん [2020/03/31(火) 19:33:15 ID:+LMTnMxG.net]
>>1


12 名前:132人目の素数さん [2020/04/01(水) 20:43:12.06 ID:r0tTTxUb.net]
f(x) = x + exp(-x) とし、数列{a[n]}を
a[1]=0 , a[n+1] = f(a[n]-1) (n≧1) で定める。
このとき lim(a[n]) が存在するなら求めよ。



漸化式が解ける気がしないので
挟み撃ちとかにするのでしょうかっ 分かりません。
よろしくお願いします。

13 名前:132人目の素数さん mailto:sage [2020/04/01(水) 22:51:39.14 ID:ifSmeiap.net]
グラフを描いて見当をつける

14 名前:132人目の素数さん mailto:sage [2020/04/02(Thu) 01:20:50 ID:Bn/Nwl35.net]
>>12
十分大きなnについて、(a[n+1]-1)/(a[n]-1)の絶対値の上限が1未満であることが言えたら、a[n]-1は0に収束すると言える

15 名前:132人目の素数さん [2020/04/02(Thu) 01:24:59 ID:4wgrunsr.net]
極限が存在すると仮定して、それをaとすると、a=f(a-1)=a-1+exp(-(a-1))より、a=1

16 名前:132人目の素数さん [2020/04/02(Thu) 02:25:08 ID:4wgrunsr.net]
方程式x=f(x-1)を解くのに、a[n+1] = f(a[n]-1)を調べる
解をaとし、a[n+1]-a=f(a[n]-1)-f(a-1)=(a[n]-a)f'(t-1)(ただしtはa[n]とaの間の数)より、
a[n]-a=(a[2]-a)Π[k=2,n-1]f'(t[k]-1)(ただしt[k]はa[k]とaの間の数)と書けるので、
微分の絶対値が1より小さいなら、nを飛ばせば右辺=0より左辺=0で、極限はa=1に等しい

1<xのとき、0<f'(x-1)=1-exp(1-x)<1で、y=f(x-1)はy=xよりも小さい増加関数で、
a[2]>1で、グラフy=(x-1)のx=a[2]の点から左に進みy=xに当たったときのx座標がa[3]だから、
1<a[3]<a[2]で、以下同様、n>1のとき常に0<f'(t[n]-1)<1だから、lim(a[n])=a=1

17 名前:132人目の素数さん [2020/04/02(木) 14:20:42.77 ID:OOSSGUQl.net]
あrがとうございます。

g(x)=x-1+exp(-x+1) とおいてa[n+1]=g(a[n]) と考えればわかりやすいかったですね。

18 名前:132人目の素数さん mailto:sage [2020/04/02(木) 16:05:23.97 ID:/ibIj00g.net]
 a[n+1] = a[n] -1 + exp(1-a[n]),
と書けばよく分かる。
 e^x - e = 0 をニュートン法で解いてるみたいな式だが・・・・

〔補題〕
 x>0 のとき 0 < f(x) -1 < xx/2,
t>0 のとき exp(-t) < 1,
 f(x) -1 = x -1 + exp(-x) = ∫[0,x] {1-exp(-t)} dt > 0,
∴ 0 < 1-exp(-t) < t, (t>0)
 f(x) -1 = ∫[0,x] {1-exp(-t)} dt < ∫[0,x] t dt = xx/2,

 0 < a[n+1] -1 = f(a[n]-1) -1 < (1/2)(a[n]-1)^2,
 a[n] -1 ≦ 2 になると(正ではあるが)小さくなる。
 a[1] -1 = -1,
 a[2] -1 = e -2 = 0.718288183
 a[3] -1 = e-3 +e^(2-e) = 0.20587113

19 名前:132人目の素数さん mailto:sage [2020/04/02(Thu) 19:49:57 ID:/ibIj00g.net]
 e^x - e = 0
に e^(-1) + e^(-x)> 0 を掛ければ
 2 sinh(x-1) = 0
これをニュートン法で解けば
 b[n+1] = b[n] - tanh(b[n] -1),
より
 b[n+1] -1 =(b[n] -1)- tanh(b[n] -1)≒(1/3)(b[n] -1)^3,
で3次収束になり、速度が改善する。

20 名前:132人目の素数さん [2020/04/05(日) 16:23:14 ID:8JoPAvX0.net]
凸な立体は、どのような平面で切断しても断面は凸ですが
逆に、どのような平面で切断しても断面が凸になる立体は凸といえますか。



21 名前:132人目の素数さん [2020/04/05(日) 16:33:11 ID:hMwnLbDZ.net]


22 名前:132人目の素数さん [2020/04/05(日) 17:05:53 ID:iq2DMm8O.net]
>>20
2点取ってその間全部含まれることは平面で十分だからOK
というか平面で切って凸というより直線を刺して線分(凸)で十分

23 名前:132人目の素数さん mailto:sage [2020/04/06(月) 02:00:39 ID:RP9fz2Yf.net]
>>19

b[1] -1 = -1
b[2] -1 = tanh(1) -1 = -2/(ee+1) = -0.238405844
b[3] -1 = -0.0044164
b[4] -1 = -2.87132 ×10^(-8)
b[5] -1 > -10^(-23)

>>18 の
a[4] -1 = 0.01980909
a[5] -1 = 0.00019491
に比べて速い。

24 名前:132人目の素数さん [2020/04/06(月) 16:04:14 ID:WAovYv4Y.net]
f(x)=x

25 名前:^3+ax^2+bx (a.bは定数)
曲線y=f(x)が直行する2つの接線を持つための必要十分条件はa^2-3b >0 であることを示せ。
十分条件はわかりますが、必要条件の証明がわかりません
有名な問題らしいですが、よろしくお願いします。
[]
[ここ壊れてます]

26 名前:132人目の素数さん [2020/04/06(月) 16:29:40 ID:Z4c56lCF.net]
f'(x)=3x^2+2ax+b=3(x+a/3)^2+b-a^2/3だからb-a^2/3は微分係数の最小
これが正なら、微分係数はどれも正なので、どんな微分係数の積も-1になりえない
これが負なら、任意の負の微分係数に対して積が-1となる微分係数が二つ存在する

27 名前:132人目の素数さん [2020/04/06(月) 16:32:09 ID:Z4c56lCF.net]
間違えた

× これが正なら、微分係数はどれも正なので、どんな微分係数の積も-1になりえない
○ これが非負なら、微分係数はどれも非負なので、どんな微分係数の積も-1になりえない

28 名前:132人目の素数さん [2020/04/06(月) 17:18:55.37 ID:WAovYv4Y.net]
>>25
回答ありがとうございます。

任意の負の微分係数に対して
"積が-1となる微分係数が二つ存在する "
の意味がよくわかりません。

29 名前:132人目の素数さん mailto:sage [2020/04/06(月) 17:34:35.15 ID:RP9fz2Yf.net]
f '(x)の最小値 b-aa/3 が負なら、
ある実数pについて f '(p) < 0.
f '(x) + 1/f '(p) の最小値も負。
  (3b-aa)/3 + 1/f '(p) < 0,
∴ f '(q) + 1/f '(p) = 0 となる q がpの両側にある。→2つ

30 名前:132人目の素数さん [2020/04/06(月) 17:37:08.77 ID:Z4c56lCF.net]
a^2-3b>0のとき、負の微分係数があり、これを正の数cを用いて-1/cと書けば、
f'(x)=3x^2+2ax+b=cの判別式/4=a^2-3(b-c)=a^2-3b+3c>0より、f'(x)=cを満たすxが二個ある



31 名前:132人目の素数さん mailto:sage [2020/04/06(月) 18:43:56 ID:NZLxolRV.net]
東工大もなあ
東大に行けないからしかたなく行く大学だしなあ
東工大の合格者数で勝ったってのは
東大に行けない人数で勝ったということだよ

32 名前:132人目の素数さん [2020/04/06(月) 18:53:18 ID:roZdJRo3.net]
「東大が第一志望です!東大しか見えない!」←わかる
「京大が第一志望です!京大しか見えない!」←わかる
「北大が第一志望です!北大しか見えない!」←わかる
「東工大が第一志望です!東工大しか見えない!」←よくわからない

33 名前:132人目の素数さん mailto:sage [2020/04/06(月) 18:53:24 ID:Pzpz6bNy.net]
キチガイの誤爆

34 名前:132人目の素数さん mailto:sage [2020/04/06(月) 18:57:18 ID:NZLxolRV.net]
阪大もなあ
京大に行けないからしかたなく行く大学だしなあ
阪大の合格者数で勝ったってのは
京大に行けない人数で勝ったということだよ

35 名前:132人目の素数さん mailto:sage [2020/04/06(月) 19:14:39 ID:GtX0san9.net]
学歴コンプがなんでこんな板に来るんだ
学歴板にでもいけ

36 名前:132人目の素数さん mailto:sage [2020/04/06(月) 19:17:49 ID:Q6dyHqco.net]
東工大叩いて喜ぶような低学歴に反応するな低学歴

37 名前:24 [2020/04/06(月) 19:49:43.04 ID:WAovYv4Y.net]
すみません、よくわかりません。

>>28
f '(x) + 1/f '(p) の最小値も負。
この式はどうやって出てきたのですか?

>>29
判別式を解いてf'(x)=cを満たすxが二個あるはわかりました
このあと、a^2-3b >0なら
曲線y=f(x)が直行する2つの接線を持つ
と言えるのかが分かりません。

38 名前:132人目の素数さん [2020/04/06(月) 20:24:15.88 ID:Z4c56lCF.net]
a^2-3b>0とする
するとf'(x)=3x^2+2ax+b<0を解くと、(-a-√(a^2-3b))/3<x<(-a+√(a^2-3b))/3
この範囲の任意の実数tに対し、f'(t)<0
f'(x)=3x^2+2ax+b=-1/f'(t)を解くと、x=(-a±√(a^2-3b-3/f'(t)))/3
大きい解をp、小さい解をqと置くと、f'(p)f'(t)=-1、f'(q)f'(t)=-1だから、
接線y=f'(t)(x-t)+f(t)に直交する接線が、y=f'(p)(x-p)+f(p)とy=f'(q)(x-q)+f(q)の二つある

39 名前:132人目の素数さん mailto:sage [2020/04/06(月) 20:50:06.05 ID:i0MVTXkI.net]
コンプレックスは正しい。恐怖を忘れた人間は危ない。
コンプレックスを忘れずに自信を根拠付きで作れ。恐怖を忘れずに強さを根拠付きで作れ。
抱えて、其れでも頑張って責めて秋山仁くらいにはなれよ。
テメェが天才秀才に成れなくても次代を育てられる人間、見出だす人間に成るって手も有んぞ。

呆っと生きてんじゃねぇよ、惚や惚や生きてんじゃねぇよ、
ボヤきボヤき言い訳を尤もらしく聴かせるべく狡く巧く誤魔化す言い方してんじゃねぇよ!

>>38
お前が言うな、どの口が言ってんだこの屑野郎!

40 名前:24 [2020/04/06(月) 21:08:12.19 ID:WAovYv4Y.net]
>>37
f'(p)f'(t)=-1、f'(q)f'(t)=-1
はどうやって計算したのですか?



41 名前:132人目の素数さん [2020/04/06(月) 21:16:55.81 ID:Z4c56lCF.net]
p=(-a+√(a^2-3b-3/f'(t)))/3は、f'(x)=3x^2+2ax+b=-1/f'(t)の解で、f'(p)=-1/f'(t)、f'(p)f'(t)=-1
q=(-a-√(a^2-3b-3/f'(t)))/3は、f'(x)=3x^2+2ax+b=-1/f'(t)の解で、f'(q)=-1/f'(t)、f'(q)f'(t)=-1

42 名前:24 [2020/04/06(月) 21:43:53.92 ID:WAovYv4Y.net]
>>37
f'(p)f'(t)=-1、f'(q)f'(t)=-1
はわかりました。
その後の
"接線y=f'(t)(x-t)+f(t)に直交する接線が、y=f'(p)(x-p)+f(p)とy=f'(q)(x-q)+f(q)の二つある "
の意味がわかりません

曲線y=f(x)が直行する2つの接線を持つというのに直線が
y=f'(t)(x-t)+f(t)
y=f'(p)(x-p)+f(p)
y=f'(q)(x-q)+f(q)
の3本出てくる理由がわかりません

43 名前:132人目の素数さん [2020/04/06(月) 22:38:57.10 ID:Z4c56lCF.net]
質問の意味が分からない

44 名前:24 [2020/04/06(月) 23:03:19.32 ID:WAovYv4Y.net]
>>37
f'(x)=3x^2+2ax+b=-1/f'(t)を解くと
この方程式がどうして出てきたのかからわかりません

45 名前:132人目の素数さん [2020/04/06(月) 23:16:40.08 ID:Z4c56lCF.net]
f'(x)f'(t)=-1を満たすxを求めるために方程式f'(x)=-1/f'(t)を立てた

46 名前:132人目の素数さん mailto:sage [2020/04/06(月) 23:55:45.61 ID:RqJHYQPq.net]
>>43
まず
「曲線y=f(x)が直交する2つの接線を持つ」⇔「f'(α)f'(β)=-1を満たすα、βが存在する」
を確認

47 名前:28 mailto:sage [2020/04/07(火) 00:05:50.36 ID:ZlV3F5Vq.net]
>>36
f '(x) の最小値は b-aa/3  >>25

f '(x) + 1/f '(p) の最小値は  (b-aa/3) + 1/f '(p),

負の数を2つたしたら負。

48 名前:132人目の素数さん mailto:sage [2020/04/07(火) 00:54:14 ID:ZlV3F5Vq.net]
判別式厨ウザイ・・・・

〔問題〕
f(x) は微分可能 f '(x) は連続で下に有界だが
上に有界でない(いくらでも大きい値をとり得る)とする。
このとき
曲線 y = f(x) が直交する2つの接線を持つ ⇔ min{f '(x)}< 0
を示せ。

49 名前:132人目の素数さん [2020/04/07(火) 05:32:06 ID:C9pUZTLh.net]
f'(x)の最小が負ならばf'(a)<0であるaと正の数-1/f'(a)に等しいf'(x)があるから成立、逆は自明

50 名前:132人目の素数さん [2020/04/07(火) 09:41:19 ID:VBKLAcNh.net]
dyが変数dxの一次関数であるのはわかるのですが
d2yはdxの2次関数ですか?もとの関数にとって何ですか?



51 名前:132人目の素数さん mailto:sage [2020/04/07(火) 12:32:21.53 ID:QOFp78Ls.net]
2次微分だろ
d(dy/dx) の省略にすぎん

52 名前:132人目の素数さん [2020/04/07(火) 12:40:49.21 ID:4zoJJRpD.net]
x^4+x^3-2x+1>0 を示すには
どうのような解法をすればいいでしょう。
微分しても極小値が求められず困ってむす。

53 名前:132人目の素数さん mailto:sage [2020/04/07(火) 13:05:07.93 ID:14NNUGyF.net]
4x^3+3x^2-2は因数分解出来るよ
そうすると4x^3+3x^2-2=0の実数解は1つしかないことがわかり、そこでx^4+x^3-2x+1が最小値をとるとわかる
最小値が正なのでその不等式が成り立つ

54 名前:132人目の素数さん mailto:sage [2020/04/07(火) 13:07:51.43 ID:14NNUGyF.net]
すまない
微分するとき間違えてた
>>52は間違い

55 名前:132人目の素数さん mailto:sage [2020/04/07(火) 14:04:53 ID:Cmok2i8i.net]
>>51
x^4+x^3-2x+1
=x(x-1)(x^2+2x+2)+1
と変形すれば、xが0以下、または、1以上では、成立していることが判る。

0<x<1では、
x^4+x^3-2x+1 > x^5+x^3-2x+1
と変形すれば、あとは、通常の微分法でいけます。

56 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/07(火) 14:36:56 ID:St9xu4sq.net]
>>51
f(x)=x^4+x^3-2x+1
f(0)=1,f(1)=1
f'(x)=4x^3+3x^2-2
f'(0)=-2,f'(1)=5
f'(-1)=-3,
f'(-1/2)=-7/4,
f'(-1/4)=-15/8
f'(0.6)=-0.056
f'(0.61)=0.024224
f'(2/3)=14/27
y=f(x)のグラフを描くと、
f'(x)=0となるのは、
x=0.6〜0.61のとき。
4(0.607007295624695)^3+3(0.607007295624695)^2-2=0
f(0.607007295624695)=(0.607007295624695)^4+(0.607007295624695)^3-2(0.607007295624695)+1
=0.145403208>0
左手にガラケー、右手にボールペン、膝に紙切れ、で解けます。

57 名前:132人目の素数さん [2020/04/07(火) 14:43:44 ID:G68TvllR.net]
画像の左辺の積分で右辺のように部分分数分解できなかなと思ったら、A+B=1かつA+B=-1となって部分分数分解できなかったのでしがなぜできないのでしょうか
https://dotup.org/uploda/dotup.org2106628.jpg.html

58 名前:51 [2020/04/07(火) 14:52:32 ID:4zoJJRpD.net]
>>54 ありがとうございます。

 x^4+x^3-2x+1
 =x(x-1)(x^2+2x+2)+1

とか
 0<x<1では、
 x^4+x^3-2x+1 > x^5+x^3-2x+1

のような変形はすぐに思いつけるものなんですか。当方にはすごい柔軟でかつハイブロウな発想に見えます。

59 名前:132人目の素数さん [2020/04/07(火) 18:25:16.66 ID:C9pUZTLh.net]
>>51
f''(x)=12x^2+6xより、x=-1/2のときf'(x)は極大で、
f'(x)=f''(x)(x/3+1/12)-x/2-2より、f'(-1/2)=1/4-2<0
f'(x)=0の解は一個、解をaとすると、f'(1/2)<0<f'(2/3)より、1/2<a<2/3

f(x)=f'(x)(x/4+1/16)-3/16(x^2+8x-6)より、f(x)≧f(a)=-3/16(a^2+8a-6)
=-3/16((a+4)^2-22)>-3/16((2/3+4)^2-22)>0

60 名前:132人目の素数さん [2020/04/07(火) 18:35:35.85 ID:I+3THr08.net]
関数f(x)に具体的な数値を入れて計算するときは全射であるという前提が必要だから
高校数学だと不正確な議論をしていることになる
そもそも関数の話をするにはまず定義域を確定しなければならない
そのためには値域を{0}に固定する必要がある
つまり方程式を立ててすべての定義域の値を求める
そこから全射の前提を用いると
初めて関数f(x)のxに求めた定義域を代入することができる



61 名前:132人目の素数さん mailto:sage [2020/04/07(火) 18:52:26.34 ID:WU/C5BQU.net]
スツルム列を計算すると
f0(x)=x^4+x^3-2x+1
f1(x)=4x^3+3x^2-2
f2(x)=1/16x^2+3/2x-9/8
f3(x)=-2304x+1676
f4(x)=4151/5308416

-∞での符号変化は+-+++で2回、
∞での符号変化は+++-+で2回。
∴ f0(x)=0の実数解の個数は2-2=0個。

62 名前:132人目の素数さん mailto:sage [2020/04/07(火) 20:04:51.81 ID:5+6nxsst.net]
f(x):=x^4+x^3-2x+1

case z=0
f(0)=1>0

lemma
for x>0, g(x):=xxx+xx+1/x > 2
∵using AM-GM, g(x) = xxx+xx+5*(1/5x) >= 7*(xxx*xx*(1/5x)^5)^(1/7) = 7/(5^(5/7))=2.21...

case x>0
f(x) = x*(g(x)-2) > 0

case x<0
y:=-1/x, then y>0
f(x) = (yyy+2yy+1/y-1)/yyy > (g(y)-1)/yyy > 0

63 名前:132人目の素数さん mailto:sage [2020/04/07(火) 23:59:32 ID:iJ676xA6.net]
cos型の合成って必要なんですか
1998の2bに出たのは知ってますがsinからサインカーブで求められますよね

64 名前:132人目の素数さん mailto:sage [2020/04/08(水) 00:44:56 ID:NgNCsquc.net]
成す角はcosで測るし、むしろcosで合成する方が主役でsinはおまけでは

65 名前:132人目の素数さん mailto:sage [2020/04/08(水) 00:52:03 ID:8vtD1YBT.net]
>>56
(x+1)/(x-1)^2 = ((x-1)+2)/(x-1)^2
= 1/(x-1)+2/(x-1)^2

66 名前: 【豚】 mailto:sage [2020/04/08(水) 00:56:05 ID:SDI6gPg2.net]
前>>55   _△_
>>51正解 (・。・~)
~ だら? υυ `〜
~      ~~ ~

67 名前: mailto:sage [2020/04/08(水) 00:59:16.49 ID:SDI6gPg2.net]
>>65
~   _△_
~  (・。・~)
~  υυ `〜
~    ~~ ~
f'(x)=0を与えるxについてf(x)>0を言ったんだよ。

68 名前:イナ mailto:sage [2020/04/08(水) 01:12:26.94 ID:SDI6gPg2.net]
>>66
>>51
f(x)=x^4+x^3-2x+1の極小値じゃないに。
最小値が0.145403208や言いよるき。
最小値が0より大きいけん、
f(x)=0は解なしやし、
f(x)は常に0よりおっきなるって言ってむす。

69 名前:132人目の素数さん mailto:sage [2020/04/08(水) 02:04:29.13 ID:pDfrzDrp.net]
3乗の項を消してから平方完成みたいにすれば・・・

f(x) =(x+1/4)^4 -(3/8)(x+1/4)^2 -(15/8)(x+1/4)+ 381/256
 ={(x+1/4)^2 - (17/20)^2}^2 + 1.07xx -1.34x + 0.5644
 ={(x-0.6)(x+1.1)}^2 + 1.07(x-67/107)^2 + 0.14486729
 > 0.14486729

>>51
微分して
f '(x) = 4x^3 + 3x^2 -2,
極小となるxは
x ={-1 +(15-4√14)^(1/3)+(15+4√14)^(1/3)}/4 = 0.6070072956247
極小値は 0.145403・・・・

70 名前:132人目の素数さん [2020/04/08(水) 10:00:36.54 ID:r4ItKhk6.net]
>>61
この g(x) はどのように思いつくですか?



71 名前:132人目の素数さん mailto:sage [2020/04/08(水) 12:00:16 ID:pDfrzDrp.net]
>>51
(1/4)x^4 + x^3 - 2x + 1 =(xx/2 +x -1)^2 ={(x+1+√3)(x+1-√3)/2}^2,

(参考)
・ヒルベルトの数学の問題(第17問)

72 名前:132人目の素数さん mailto:sage [2020/04/11(土) 16:54:13.95 ID:WoLGfBUp.net]
そのIQはどこで手に入れた?

73 名前:132人目の素数さん [2020/04/13(月) 11:10:58 ID:v6Cd6JoA.net]
x^(-1)+y^(-1)=z^(-1)
の正の整数解 (x,y,z) のうちの (x,y) を平面にプロットすると、
点がたくさん乗っている直線 x+y=k (傾き −1 )がたくさんあるように見えるけど、
これ本当に一直線上?

74 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/13(月) 13:49:46 ID:LbSp5muR.net]
前>>67
>>51
f(x)=x^4+x^3-2x+1において、
f'(x)=4x^3+3x^2-2
f'(0.607007295624695)=4(0.607007295624695)^3+3(0.607007295624695)^2-2=0
f(0.607007295624695)=(0.607007295624695)^4+(0.607007295624695)^3-2(0.607007295624695)+1
=0.145403208>0
正解だろ。正解じゃないのか? 緊急経済対策お願いします。

75 名前:132人目の素数さん mailto:sage [2020/04/13(月) 17:01:13.83 ID:d9eRwKZx.net]
>>72
図で説明できる?

76 名前:132人目の素数さん mailto:sage [2020/04/14(火) 14:26:05 ID:Qyt7VTcl.net]
>>72
yz + xz = xy だから x + y = xy/z
当然たくさんあるだろ

77 名前:132人目の素数さん mailto:sage [2020/04/14(火) 21:08:50 ID:z6jscJOC.net]
平面で円の外部に点Aがあるとき、
円周上の点とAとの距離が最大・最小になる点は円の中心OとAを通る直線と円との交点であることの証明を教えください

78 名前:132人目の素数さん mailto:sage [2020/04/14(火) 21:29:42 ID:+bTXKEVU.net]
適当に座標軸設定して計算してしまえば終わりそうだが自分ではどういうふうにどこまで考えたのよ

79 名前:132人目の素数さん mailto:sage [2020/04/14(火) 21:30:30 ID:aI1RlMc5.net]
背理法かなあ

80 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/14(火) 23:07:53 ID:+XzgV1so.net]
__/\/ zz..,,、、∩∩/|
 ̄\/ zz..彡`-`ミっ))|
 ̄|\______U,~⌒ヾ、 |_
]| ‖ ̄ ̄ ̄ ̄U~~U / /
__| ‖ □ □ ‖ |/ /
___`‖________‖/_/前>>73当たりじゃないの?
>>76当たり前だろうが。せやて最小の直線ABと最大の直線ACについてBAOCが一直線に並ぶんだもん。



81 名前: 【ぴょん吉】 mailto:sage [2020/04/15(水) 00:04:08 ID:NZoTMZcF.net]
前>>79当たり前じゃないのかな? ベクトルは?
→AB=→AC+→CB
=→OC-→OA+→OB-→OC
=→OB-→OA
明らかなもん証明しろってご無体だね。

82 名前:132人目の素数さん mailto:sage [2020/04/15(水) 02:34:12 ID:OBrsEksp.net]
円C0の周上の1点をPとする。
Aを中心とする半径APの円を縮小してゆき、円C0に接するところで止める。
C0とC1の接点をBとする。
Aを中心とする半径APの円を拡大してゆき、円C0に接するところで止める。
C0とC2の接点をDとする。
このとき、明らかに
AB ≦ AP ≦ AD
B、D がどこか考える。

83 名前:132人目の素数さん mailto:sage [2020/04/15(水) 04:12:54 ID:80meGo9t.net]
バカ丸出しの証明ばかりだな
言われるまで「当たり前」ですごしてきて
まともに考えたこともないのが見え見え。

84 名前:132人目の素数さん mailto:sage [2020/04/15(水) 11:13:45 ID:Vmoekdzh.net]
直線AOと円との交点をAに近い方からB、Cとする
円周上にB、Cと異なる点Pをとる
△BCPは直角三角形なので∠CBPは鋭角
従って∠ABPは鈍角
△ABPは∠ABPを鈍角とする鈍角三角形なのでAP>AB ←ここは当然として良いと思うけどダメなら三平方とかで
AC>ABは明らかなので点Aから最も近い円周上の点はB
Cが最も遠いっていう方も似た感じで

85 名前:132人目の素数さん mailto:sage [2020/04/15(水) 14:27:18.84 ID:OBrsEksp.net]
>>76
B,C を >>83 のようにおく。三角不等式から
 AO - OP ≦ AP ≦ AO + OP,
 AO - OB ≦ AP ≦ AO + OC,
 AB ≦ AP ≦ AC.

86 名前:132人目の素数さん [2020/04/15(水) 23:44:15 ID:VAVf+9R/.net]
xの4次方程式 x^4+2x^3+(a-1)x^2-2x-a=0 の異なる実数解が3個であるとき
定数aの値求めよ。

微分してグラフを考えようとしましたが
極値を与えるxが求められぬ困ってます

87 名前:132人目の素数さん mailto:sage [2020/04/15(水) 23:52:49 ID:JJHLl1Re.net]
素数に関する問題を解く中で出てきた補題なのですが、Kを任意の大きな自然数とし、
(K以下の素数pの1/logpの和) < K/logK
が成立するかどうか、という問題がわかりません。
1/logp < 1で和 < (素数の個数)になるので素数定理から大体(logK)^2 < KになるのでKが大きい時は不成立でこの方針(補題)であってるのではないかなと思っているのですが…

88 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 00:00:00 ID:uC6HgHlE.net]
間違えました。
Dを自然数の定数として任意の大きなKで
(K以下の素数pの1/logpの和) < K/DlogK
となるようなDは存在しない事を示せ、でした。

89 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 00:45:21 ID:OHeP0853.net]
>>85
(x+1)(x-1)(x^2+2x+a)=0

90 名前:イナ mailto:sage [2020/04/16(木) 01:20:59.39 ID:SCwY7gJQ.net]
>>80
>>85
f(x)=x^4+2x^3+(a-1)x^2-2x-aとおくと、
f(1)=1+2+a-1-2-a=0
f(x)=(x-1)(x^3+3x^2+2x+a)
=(x-1)(x+1)(x^2+2x+a)
=(x-1)^2(x+1)(x-a)
∴a=-3



91 名前:132人目の素数さん [2020/04/16(Thu) 02:00:27 ID:nr8io1K/.net]
さすがイナさん!

92 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 08:09:04 ID:B7OUkOCT.net]
>>83
とても納得できました
ありがとうございます

93 名前:132人目の素数さん mailto:sage [2020/04/16(木) 09:31:24.90 ID:9pvf34+f.net]
>>91
いや、すまない
>>84さんの言っている三角不等式で十分だった
△APOを見るとAP+PO>AO
AO=AB+BOだからAP+PO>AB+BO
PO=BOだからAP>AB

94 名前:132人目の素数さん [2020/04/16(Thu) 12:03:54 ID:soWjmqUz.net]
(問題)
数年前橋下市長が地下鉄料金を値下げを敢行。
実際には最初の1区間だけ20円安くなっただけで、その他の区間は全て10円値上げになりました。
利用者全体から見て、実際の所安くなったのでしょうか?

https://blog.goo.ne.jp/dxo186556_001/e/171c4a626bea694be060bde03f60e2d9
初乗りは値下げ、3キロ超はアップ…「紛らわしい」大阪市営地下鉄、利用者困惑

(自分なりの回答)
(1)最初の区間を利用している人は全体の約30%。
この人達は値下げの恩恵を受けている。
−20円?30%=−6円

(2)その他の区間の利用者は
+10円?70%=+7円

(1)と(2)より
−6+7=+1円

∴1円高くなった。

95 名前:132人目の素数さん [2020/04/16(Thu) 12:04:14 ID:soWjmqUz.net]
1円割高と朝三暮四より
猿>大阪人

宋に狙公という者がいました。
(彼は)猿を愛し、これ養っており(その数は)群れをなすほどでした。
(彼は)猿の気持ちを理解することができ、猿もまた彼の心をつかんでいました。
(彼は)自分の家族の食料を減らして、猿の食欲を満たしてやっていました。
(ところが)急に貧しくなってしましました。
そこで猿のエサを減らそうとしました。
(エサを減らすことで、)猿たちが自分になつかなくなるのではと心配たのか、
初めにこれをだまして言うことには、
「お前たちにどんぐりを与えるのを、朝に3つ夕方に4つにしようと思うが、足りるか。」と。
(すると)猿は皆立ちあがって怒りました。
(そこで彼が)急に言うことには、
「お前たちにどんぐりを与えるのを、朝に4つ夕方に3つにしようと思うが、足りるか。」と。
猿たちは皆ひれ伏して喜びました。

96 名前:132人目の素数さん [2020/04/16(Thu) 12:06:29 ID:soWjmqUz.net]
>>93
【訂正】

(問題)
数年前橋下市長が地下鉄料金を値下げを敢行。
実際には最初の1区間だけ20円安くなっただけで、その他の区間は全て10円値上げになりました。
利用者全体から見て、実際の所安くなったのでしょうか?

https://blog.goo.ne.jp/dxo186556_001/e/171c4a626bea694be060bde03f60e2d9
初乗りは値下げ、3キロ超はアップ…「紛らわしい」大阪市営地下鉄、利用者困惑

(自分なりの回答)
(1)最初の区間を利用している人は全体の約30%。
この人達は値下げの恩恵を受けている。
−20円*30%=−6円

(2)その他の区間の利用者は
+10円*70%=+7円

(1)と(2)より
−6+7=+1円

∴1円高くなった。

97 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/16(Thu) 12:49:44 ID:SCwY7gJQ.net]
前>>89
>>94
朝三暮四は3+4=7?
朝四暮三は4+3=7
∴猿がもらえる栃の実の数は同じ。

98 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 14:46:35 ID:eg8Yw17b.net]
>>88
お見事

99 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 14:52:10 ID:soWjmqUz.net]
>>96
だから大阪人は猿より劣ると。
猿>大阪人
>>95の俺の考え方はあってるだろうか?w

100 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 14:54:08 ID:soWjmqUz.net]
>>98
猿が同数でも喜ぶのに対して、大阪人は多く取られても橋下を支持している。



101 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 14:57:31 ID:fMWJolbu.net]
変なのが来たな
イナに構ってるしお客さんかな

102 名前:132人目の素数さん mailto:sage [2020/04/16(Thu) 17:23:08 ID:Fekx2b8P.net]
>>88
 a≧1では解 ±1 の2個だけだが
 aが1(転移点)より小さくなった途端に -1 が3個に分岐し、aが小さくなるほど
  -1, -1±√(1-a)
 に従って広がる。
 +1 と交叉する所が a=-3  >>89

>>93-99
 大坂商人なら、1駅歩いて (1区下げて) 50円浮かすとか考えるんぢゃね?

>>96
(大意)
 加法は可換だから等しい、という意味。

103 名前:132人目の素数さん [2020/04/19(日) 11:16:38 ID:KMJ+Df1e.net]
a,bが実数のとき
min(a-b^2, b-a^2) の最大値 はどう求めればいいですか。

104 名前:132人目の素数さん mailto:sage [2020/04/19(日) 14:09:12 ID:MUKBwLTu.net]
>>102
a-b^2≧b-a^2
を満たす領域Dを求めてDにおけるb-a^2の最大値を求めればいい

105 名前:132人目の素数さん mailto:sage [2020/04/20(月) 09:59:10 ID:rA0/Poiv.net]
>>102
min(a-bb, b-aa)
 ≦{(a-bb)+(b-aa)}/2
 ={ 1/2 -(1/4 -a +aa)-(1/4 -b +bb)}/2
 ={ 1/2 -(1/2 -a)^2 -(1/2 -b)^2}/2
 ≦ 1/4,
等号成立は a=b=1/2 のとき。
ぢゃね?

106 名前:132人目の素数さん mailto:sage [2020/04/20(月) 20:07:51 ID:rA0/Poiv.net]
>>102
min(a-bb, b-aa)
 ={ (a-bb) + (b-aa) -|(a-bb) - (b-aa)|}/2
 ={ 1/2 -(1/4 -a +aa)-(1/4 -b +bb) - |a-b| |1+a+b| }/2
 ={ 1/2 -(1/2 -a)^2 -(1/2 -b)^2 - |a-b| |1+a+b| }/2
 ≦ 1/4,
等号成立は a=b=1/2 のとき。
かな?

107 名前:132人目の素数さん mailto:sage [2020/04/22(水) 02:22:18 ID:6crtYfJp.net]
>>89
イナさんは東大大学院出て工場で働いていたの?

108 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/22(水) 10:18:51 ID:iq1GZOqA.net]
前>>96
>>106大学院に通っていたことと工場に勤めていたことに因果関係はあまりない。卒業してから工場にたどり着くまでには正社員とか俳優とか中九年の変転がある。その間いろんな物語があったけど決して因数分解を忘れたわけじゃない。
‖∩∩‖ □ ‖
((-_-)   ‖─┰─┐
(っγυ  。‖─╂─┤
■`(_)_)ц~ ‖─╂─┤
\■υυ■_∩∩、\\│
\\\\⊂(_ _ )`⌒つ)
\\\\\\\`υ、\/|
\\\\\`.,、、、\`/ |
__\\\\彡`-`ミっ/ L
 ̄|\_\\_U,~⌒ヾ /
]| ‖ ̄ ̄ ̄ ̄U~~U / /
__| ‖ □ □ ‖ |/ /
___`‖________‖/_/
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ /
__________________‖/

109 名前:132人目の素数さん mailto:sage [2020/04/23(Thu) 01:3 ]
[ここ壊れてます]

110 名前:2:50 ID:utVsgKJR.net mailto: >>107
イナさんは何歳ですか?
[]
[ここ壊れてます]



111 名前:132人目の素数さん mailto:sage [2020/04/23(Thu) 06:44:48 ID:dGtJlJ26.net]
他所でやれ

112 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/23(Thu) 14:49:31 ID:YxsPXNvw.net]
___∩ っ゙___前>>107
 (-_-))  /|、\\\\
\υ⌒υ、 /|\\\\\
 ̄ ̄ ̄|υ/|、\\\\\
______「 ̄|∩∩/、\\\
\\\`⊂(_ _ );⌒つ\
\\\\\\\υ\\\\\\\\\\\\\\\\>>108年齢は役によると思。

113 名前:132人目の素数さん mailto:sage [2020/04/23(Thu) 22:32:02 ID:Os3jmfv5.net]
じゃあ157億2014万42歳って事で

114 名前:132人目の素数さん mailto:sage [2020/04/24(金) 00:50:44.82 ID:qAydMWxw.net]
他人に聞く前に「イナ ◆/7jUdUKiSM」でぐぐれば全部でてくるやん
どこまで本当かは知らんけど

115 名前:132人目の素数さん mailto:sage [2020/04/24(金) 00:52:12.74 ID:eEz3+JoT.net]
イナの話題にして荒らしたいんでしょ
アスペか何か知らんけど

116 名前:132人目の素数さん mailto:sage [2020/04/24(金) 04:11:08 ID:4encEAD3.net]
>>110
イナさんは童貞ですか?

117 名前:132人目の素数さん mailto:sage [2020/04/24(金) 16:26:43 ID:Qp7zMC8W.net]
否をイナと読んでもなー

118 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/24(金) 19:22:40 ID:A23RaIEQ.net]
望月教授がもしも俺レベルのふつうの高校生だったとしたら、青チャートで代・幾と基礎解の独学にいそしんでたころ、俺は初めて未知数をxとおいて方程式を立てる技を授業で学んでいたはずだ。
‖∩∩‖ □ ‖前>>85、
((-_-)  ‖______‖
(っγ゙  。‖╂─╂‖
■`(_)_)ц~ ‖╂─╂‖
\■υυ■_∩∩、\\‖
\\\\⊂(_ _ )`⌒つ)
\\\\\`.、,`υ、\/|
__\\\\彡`-`ミっ、/ L
 ̄|\_\\_U,~⌒ヾ/ /
]| ‖ ̄ ̄ ̄ ̄U~~U / /
__| ‖ □ □ ‖ |/ /
___`‖________‖/_/
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ /
__________________‖/

119 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/24(金) 19:30:11 ID:A23RaIEQ.net]
前々>>110ごめん、アンカー間違えた。
‖∩∩‖ □ ‖前>>116
((~.~)  ‖______‖
(っγc  。‖╂─╂‖
■`(_)_)ц~ ‖╂─╂‖
\■υυ■_∩∩、\\‖
\\\\⊂(_ _ )`⌒づ)
\\\\\`.、、`υ、\/|
__\\\\彡`-`ミっ、/ L
 ̄|\_\\_U,~⌒ヽ/ /
]| ‖ ̄ ̄ ̄ ̄U~~U / /
__| ‖ □ □ ‖ |/ /
___`‖________‖/_/
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ /
__________________‖/

120 名前:132人目の素数さん [2020/04/24(金) 19:36:43 ID:x8wF1EZV.net]
11959 は、十の位「5」を欠くと 1199 になります。
71199 は、マンの位「7」を欠くと 1199 になります。

このように、5桁の自然数のうち、一つの桁の数字を欠くと 1199 になるものは、
全部でいつくありますか。

という問題はどお数えればいいですか。



121 名前:132人目の素数さん mailto:sage [2020/04/24(金) 19:41:59 ID:3tqV45AH.net]
>>116
代数幾何、基礎解析の頃は青チャートは存在してません

122 名前:132人目の素数さん mailto:sage [2020/04/24(金) 19:46:43 ID:G9lDMLy+.net]
>>118
45個

123 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/24(金) 20:09:39 ID:A23RaIEQ.net]
‖∩∩‖ □ ‖前>>117
((`e`)>>119‖______‖
(っγ゙ぇ?。‖╂─╂‖
■`(_)_)ц~ ‖╂─╂‖
\■υυ■_∩∩、\\‖
\\\\⊂(_ _ )`⌒つ)
\\\`∩∩、`∩υ、\/|
___/ ((^_^)((ー_ー) / |
 ̄|\_,U⌒U、(っu~)/ |
]| ‖~UU~  ̄`υυ / /
__| ‖ □ □ ‖ |/ /
___`‖___3個違いで青チャートなかった?

124 名前:132人目の素数さん [2020/04/24(金) 21:55:03 ID:x8wF1EZV.net]
>>120
答えはあってます。

どお数えるかを教えてほしいのです。

125 名前:132人目の素数さん [2020/04/24(金) 21:57:16 ID:MfsWRYlO.net]
>>122
バカなんだから列挙しろバカなんだから

126 名前:132人目の素数さん [2020/04/24(金) 23:02:44 ID:ZBDsOWg7.net]
>>122
全部列挙したら良いよ

127 名前:132人目の素数さん mailto:sage [2020/04/24(金) 23:13:43 ID:gAM6gLQO.net]
5*10-1-2-2とか4*10+9-2-2とか
先頭に0は来ないことと1と9を使うときは注意するくらいでいけるだろ

128 名前:132人目の素数さん [2020/04/25(土) 00:16:05 ID:mAWhf4Gz.net]
立体のイメージが想像できない。断面もよくわからないのですが。

原点及び(1,0,0),(1,1,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1)
を頂点とする立方体がある。
この立方体を、x軸,y軸,z軸のまわりに回転させてできる円柱をそれぞれD_1,D_2,D_3とする。

(1)D_1とD_2の共通部分の体積を求めよ。
(2)D_1とD_2とD_3の共通部分の体積を求めよ。

129 名前:132人目の素数さん mailto:sage [2020/04/25(土) 00:27:25 ID:nULhaJry.net]
>>126
立方体を回転させてできる円柱?って思ったけど簡単だな
実際にサイコロを回転させてみればいい
立方体の辺が軸に接しているから、対角線上にある辺が

130 名前:生きるだけ
計算は自力で頑張れ
[]
[ここ壊れてます]



131 名前: 【凶】 mailto:sage [2020/04/25(土) 00:37:26 ID:3y7P6b99.net]
‖∩∩‖ □ ‖前>>121
((-_-)  ‖______‖
(っγ゙  。‖╂─╂‖
■`(_)_)ц~ ‖╂─╂‖
\■υυ■_∩∩、\\‖
\\\\⊂(_ _ )`⌒つ)
\\\\\\\`υ、`/|
 ̄|\_\\\\\`/| |
]| ‖ ̄ ̄ ̄ ̄ ̄‖ | /
__| ‖ □ □ ‖ |/
___`‖__________‖/_/
>>118
9・10^4=90000
九万通りも書けないだろ。

132 名前: 【豚】 mailto:sage [2020/04/25(土) 00:53:00 ID:3y7P6b99.net]
前>>128訂正。
>>118
やっぱり9+10+10+10+10=49から1を2つ、9を2つ除くから、
49-2-2=45(通り)

133 名前:132人目の素数さん mailto:sage [2020/04/25(土) 01:02:31 ID:zBsoFJ5e.net]
馬鹿だからまともなら回答もできないし低IQの取り巻きがいるイナはいつまで粘着するんだよ
早く消えろ

134 名前:イナ mailto:sage [2020/04/25(土) 01:47:03.97 ID:3y7P6b99.net]
>>129
>>126
(1)イメージは熱で軟らかくなったキャラメルのハイソフトの、長い辺で向かいあう角が両側から押されて丸こくなったような形。
3つの辺の長さが2で、いちばん長い辺の長さが2√2
D_1∩D_2の体積は2より少し大きい。
体積2の直方体からはみ出した部分は積分かな。
(2)D_1∩D_2∩D_3の体積は1

135 名前:132人目の素数さん mailto:sage [2020/04/25(土) 13:57:49 ID:TejRT81v.net]
>>123-124

10199
11099
11199 (3とおり)
11*99
11909
11919
119*9
11990
11991
1199*
11999 (3とおり)
1*199
19199
*1199
91199

にて45個
* は2〜8のどれか。

136 名前:イナ mailto:sage [2020/04/25(土) 21:16:20.63 ID:3y7P6b99.net]
>>131(1)バウムクーヘン食べたらわかるかも。

137 名前:132人目の素数さん mailto:sage [2020/04/26(日) 06:17:53 ID:rur6YLxy.net]
75パー通した後25パー通る確率教えて下さい
突破率が分かりません

138 名前:132人目の素数さん mailto:sage [2020/04/26(日) 07:51:31 ID:rnIYCbNd.net]
>>134
0.75*0.25でいいよ

139 名前:132人目の素数さん [2020/04/26(日) 09:19:18.74 ID:DHiN8XuF.net]
(√3)x + x
上記を( (√3) + 1 )で割るとxという答えになりました。

(√3)x + x = y
などの時にyについてではなくて、xについての式として整理したくていつもは
( (√3) - 1 )と掛けて√を消してからさらに整数の割り算などをしていました。

(2√5)x + 5x なら ( (2√5) + 5 )で割る
6x + (√2)x なら ( 6 + (√2) )で割れば必ずxが得られるのでしょうか?

140 名前:132人目の素数さん mailto:sage [2020/04/26(日) 09:43:44 ID:rnIYCbNd.net]
>>136
ax+bx=(a+b)xだからa+bが0でなければa+bで割ることが出来て、割ればxが得られる



141 名前:132人目の素数さん [2020/04/26(日) 09:55:28 ID:DHiN8XuF.net]
>>137
(a+b)xで括れるという事でとても納得です。ありがとうございました。
ttp://school-physics.printych.com/mechanics/12-decomposition-of-thread-tension/

ここのページの最後の方に「計算の手順」というのがあって、代入法でT_1とT_2について解いています。
それを見てこんなやり方があることを知りました。

もしも可能であればもう一つ質問させて下さい。
このリンクページの最後のT_2の答えって0.517mgで合ってますか?
なんどやっても0.732mgくらいになってしまいます。
T_2 = ( (√2) / ( (√3) + 1 ) )Mgまでの手順はきっと√2を両辺に掛けて、(√3) + 1 で割ってるんだと思いますが。
僕は2√2を両辺に掛けてから、√6 + √2で割りました。

142 名前:132人目の素数さん mailto:sage [2020/04/26(日) 10:11:01 ID:rnIYCbNd.net]
>>138
誤植じゃないかな
T_1= (√6/((√3)+1))Mg
T_2=(2/√6)T_1
なんだから
T_2=(2/((√3)+1))Mg
分子は√2じゃなくて2

> T_2 = ( (√2) / ( (√3) + 1 ) )Mgまでの手順はきっと√2を両辺に掛けて、(√3) + 1 で割ってるんだと思いますが。
> 僕は2√2を両辺に掛けてから、√6 + √2で割りました。
これは何を言っているのかわからない

143 名前:132人目の素数さん [2020/04/26(日) 10:23:24 ID:DHiN8XuF.net]
>>139
0.732mgで合っていましたか。これでこの問題から離れる事ができます。
ありがとうございました。

144 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/26(日) 12:20:02 ID:yXJHppzE.net]
前>>133
>>126(1)
D_1∩D_2は、半径√2,厚さ1の中まで詰まった円盤状のバウムクーヘンを直角にくっつけて重なっている部分のイメージ。
平面z=±1および平面y=xで切りだせるが、単位立方体2個は平面y=xで切り分ける前にとりだすといい。
残り2つの部分は美味しいミルクレープ。でもイメージはパンの耳。
y=xで切ると4つの2対鏡像の物体になる。
底面が2辺1,斜辺√2の直角二等辺三角形で高さが√2-1,円柱の側面の一部を持ち、その曲面をひらくとおそらく展開図は直角三角形。
言い換えると、4つの物体はx軸方向に見てもy軸方向に見ても断面は円欠を垂直に二等分した形で、円欠の高さが√2-1,
z軸方向に見ると2辺1,斜辺√2の直角三角形。

145 名前:132人目の素数さん mailto:sage [2020/04/26(日) 13:16:30 ID:lNbbygqz.net]
>>126
(0) 各円柱のうち x≧0, y≧0, z≧0 の部分の体積は
 π/4 = 0.785398

(1) z軸に垂直な断面は
2つの長方形{1×√(1-zz) と √(1-zz)×1}の共通部分
→ 一辺 √(1-zz) の正方形。
 S(z) = 1-zz,
V = ∫[0,1] S(z)dz
 = ∫[0,1] (1-zz)dz
 = [ z - (1/3)z^3 ](z=0,1)
 = 2/3
 = 0.666667  (単位半球の1/π倍)

(2) z軸に垂直な断面は
一辺 √(1-zz) の正方形と、半径1の円の共通部分。
S(z) = z√(1-zz) + π/4 - arcsin(z), (0≦z≦1/√2)
  = 1 - zz,        (1/√2≦z≦1)
V = ∫[0,1] S(z)dz
 = ∫[0,1/√2] S(z)dz + ∫[1/√2,1] (1-zz)dz
 = [ T(z) ](z=0,1/√2)+[ z -(1/3)z^3 ](z=1/√2,1)
 = {4/3 - (7/12)√2} + {2/3 - (5/12)√2}
 = 2 - √2
 = 0.58578644

T(z) = - (1/3)(1-zz)^(3/2) + (π/4)x - √(1-zz) - z・arcsin(z),

1.0 → 0.785398 → 0.666667 → 0.585786 → ・・・・

146 名前:132人目の素数さん [2020/04/26(日) 13:18:46 ID:MfvpR5SQ.net]
駿台の講師試用試験みたいな問題だな

147 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/26(日) 15:18:33 ID:yXJHppzE.net]
前>>133
>>126(1)
D_1∩D_2=4∫[t=√2→1]{(2-t^2)/2}dt+2
=-4[t=1→√2][t-t^3/3]+2
=-4{√2-1-(2√2/3-1/3)}+2
=-4(√2-1-2√2/3+1/3)+2
=-4(√2-2)/3+2
=(8-4√2)/3+2
=(14-4√2)/3
=2.51171525……
予想2をちょっと超えるぐらいより丸みのぶん膨らんだ感じ。

148 名前:イナ mailto:sage [2020/04/26(日) 15:27:42.02 ID:yXJHppzE.net]
>>144アンカー訂正。
前々>>141
前々の前>>133
問題>>126積分したら負けだけど、すみません。
(1)(14-4√2)/3
=2.51171525……
(2)1

149 名前:132人目の素数さん mailto:sage [2020/04/26(日) 15:28:35.76 ID:lNbbygqz.net]
>>142
長さを √2 倍しなきゃいけないか。体積は 2√2倍になるから
(0) π/√2
(1) (4/3)√2
(2) 4(√2 - 1)

150 名前:イナ mailto:sage [2020/04/26(日) 15:37:39.91 ID:yXJHppzE.net]
>>145計算間違い。
訂正。
>>126
(1)(14-4√2)/3
=2.78104858……
(2)1



151 名前:132人目の素数さん [2020/04/26(日) 21:02:29 ID:nsVBAuZ7.net]
126(1)のハイチュウ積分
z=定数 で切ると、断面が必ず正方形に
なることを使って積分できる
https://www.wolframalpha.com/input/?i=integrate+min%281%2C+2-z%5E2%29%2C+z%3D-sqrt%282%29+to+sqrt%282%29

体積 = (-4+8√2)/3 ≒ 2.4379

152 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/26(日) 22:56:24 ID:yXJHppzE.net]
前>>147計算間違い。訂正。(1)
右にx軸、紙面手前にy軸、下にz軸をとり、xz平面に単位立方体をおくと、
y軸を中心に回転するときz=t(1≦t≦√2)で切った断面の幅はピタゴラスの定理より、

153 名前:
√(2-t^2)
D_1∩D_2は、D_1∩D_2から2つの平面z=±1で挟まれた単位立方体2個を除き、平面y=xで切った体積の片方を4倍して2を足せばいいから、
D_1∩D_2=4∫[t=√2→1]{(2-t^2)/2}dt+2
=-4∫[t=1→√2](1-t^2/2)dt+2
=-4[t=1→√2](t-t^3/6)+2=-4{(√2-1)-(√2/3-1/6)}+2
=-4(2√2/3-5/6)+2
=(8√2-4)/3
=2.4379028266……
[]
[ここ壊れてます]

154 名前:132人目の素数さん mailto:sage [2020/04/27(月) 15:14:39 ID:mVs1Et8X.net]
稲次将人 ◆/7jUdUKiSM (42歳)

155 名前:132人目の素数さん mailto:sage [2020/04/27(月) 15:16:08 ID:mVs1Et8X.net]
ああ間違えた、157億2014万42歳だ

156 名前:132人目の素数さん mailto:sage [2020/04/28(火) 00:07:51 ID:NzvESDop.net]
宇宙より20億年も年上だ。
ビッグバンのときの宇宙の様子を詳しく話してもらいたい・・・・

157 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/28(火) 06:04:47 ID:Q5cWNrtc.net]
‖∩∩ ‖ □ ‖;;;;;;
((-_-)‖  ‖;;;;;;
(っ⌒⌒゙  。‖╂─╂
■`(_)_)ц~ ‖╂─╂
\■υυ■_∩∩、\\\
\\\\⊂(_ _ )`⌒づ
\\\\\\\`υ、\\\\\\\\\\\\\\\\\`そんな年の差、今となっては4つぐらいだよ。前>>149?

158 名前:132人目の素数さん [2020/04/28(火) 15:39:37 ID:j+9EaOcS.net]
各項が正の数列{a_n}の初項から第n項までの和をs_nとするです。
n→∞のときs_n→∞であるとき
a_1/s_1 + a_2/s_2 + … + a_n/s_n は n→∞のとき∞に発散しますといえますか。

159 名前:132人目の素数さん mailto:sage [2020/04/29(水) 00:36:24 ID:I0eruAm4.net]
f(x)=1/x の定積分にうまく近似させて
∫ dx (1/x)(1/( ∫ dx (1/x) ))
= ∫ dx (1/(x log x))
= log(log x)
→∞
とするのかな

160 名前:132人目の素数さん mailto:sage [2020/04/29(水) 00:37:16 ID:I0eruAm4.net]
f(x)=1/x の定積分にうまく近似させて
S > ∫ dx (1/x)(1/( ∫ dx (1/x) ))
= ∫ dx (1/(x log x))
= log(log x)
→∞
とするのかな



161 名前:132人目の素数さん mailto:sage [2020/04/29(水) 00:38:30 ID:I0eruAm4.net]
かぶった…まいっか

162 名前:132人目の素数さん mailto:sage [2020/04/29(水) 07:40:41 ID:OCj1K9CL.net]
もっと簡単に出来た

>>154
いえるです.

(証明)
T_n = a_1/S_1 + ... + a_n/S_n とおく.
ここで S_N ≧ 2 S_n となるように N をとり
T_N と T_n を比較すると
T_N = T_n + ? {k=n+1, N} (a_k/S_k)
≧ T_n + ? (a_k/S_N)
= T_n + (S_N−S_n)/S_N
≧ T_n + 1/2
となり,T_n より 1/2 以上大きい T_N が
必ず存在する.
これを繰り返すと T_n をいくらでも
大きくできるから,T_n は ∞ に発散する.(終)

163 名前:132人目の素数さん mailto:sage [2020/04/29(水) 10:59:57 ID:/hSdwJBX.net]
〔系〕 s_n と T_n は収束・発散を共にするです。

(略証)
T_n = a_1/s_1 + a_2/s_2 + ... + a_n/s_n
 ≦ (a_1 + a_2 + ・・・・ + a_n)/s_1
 = s_n / s_1,

s_n 収束 ⇒ T_n 収束
T_n 発散 ⇒ s_n 発散   (終)

164 名前:132人目の素数さん mailto:sage [2020/04/29(水) 12:14:10 ID:/hSdwJBX.net]
>>149
さすがイナさん。
 S(z) = 2 - zz (1≦|z|≦√2)  (← □)
   = 1   (|z|≦1)
として
 V = 2∫[0,√2] S(z)dz
  = 2∫[1,√2] (2-zz)dz + 2
  = ・・・

165 名前:132人目の素数さん [2020/04/29(水) 14:11:47 ID:9wCaOkjG.net]
Σ[k=4,n] 1/(k^4-10k^2+9) を求めよ。
この問題を部分分数分解で方針立てたのだが、できない・・・。
かしこい人助けて。

166 名前:132人目の素数さん mailto:sage [2020/04/29(水) 14:17:32 ID:Mk0K+WWV.net]
1/(k-3)-1/(k-1)+1/(k+1)-1/(k+3)
= 1/(k-3)+1/(k-2)+1/(k+1)+1/(k+2)
-(1/(k-2)+1/(k-1)+1/(k+2)+1/(k+3))

167 名前:132人目の素数さん [2020/04/29(水) 14:25:20 ID:9wCaOkjG.net]
>>162
鈍くてすまん。もう少し教えてください

168 名前:132人目の素数さん [2020/04/29(水) 14:27:09 ID:9wCaOkjG.net]
>>162
各項の係数が1になるように部分分数分解できないんだが、できる?

169 名前:132人目の素数さん mailto:sage [2020/04/29(水) 14:35:31.82 ID:Mk0K+WWV.net]
16/k^4-20k^2+9)
=2/(k^2-9)-2/(k^2-1)
=1/(k-3)-1/(k+3)-1/(k-1)+1/(k+1)

170 名前:132人目の素数さん mailto:sage [2020/04/29(水) 14:44:00.36 ID:9wCaOkjG.net]
>>165
ん?
2/(k^2-9) = 1/(k-3)-1/(k+3)
成り立たなくないですか?



171 名前:132人目の素数さん mailto:sage [2020/04/29(水) 15:42:47.78 ID:jeQAoRvD.net]
1/(k^4-10k^2+9)
=1/{(k^2-9)(k^2-1)}
=(1/8){1/(k^2-9)-1/(k^2-1)}
=(1/8){1/(k-3)(k+3)}-(1/8){1/(k-1)(k+1)}
=(1/48){1/(k-3)-1/(k+3)}-(1/16){1/(k-1)-1/(k+1)}

を利用して


172 名前:^式=(1/48){1+1/2+1/3+1/4+1/5+1/6-1/(n-1)-1/n-1/n-1/(n+1)-1/(n+2)-1/(n+3)}-(1/16){1/3+1/4-1/n-1/(n+1)}
=(1/48)(1+1/2-2/3-2/4+1/5+1/6)-(1/48){1/(n-2)+1/(n-1)-2/n-2/(n+1)+1/(n+2)+1/(n+3)}
=(1/48){7/10-1/(n-2)-1/(n-1)+2/n+2/(n+1)-1/(n+2)-1/(n+3)}
[]
[ここ壊れてます]

173 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/29(水) 15:56:28 ID:pHutbusZ.net]
前>>153
>>161
k=4のとき1/(k^4-10k^2+9)=1/(256-160+9)
=1/105
=1/1・3・5・7
={(1/1-1/7)(1/6)-(1/3-1/5)(1/2)}(1/8)
k=5のとき1/(k^4-10k^2+9)=1/(625-250+9)
=1/384
=1/2・4・6・8
={(1/2-1/8)(1/6)-(1/4-1/6)(1/2)}(1/8)

k=nのとき1/(n^4-10n^2+9)=1/(n^2-1)(n^2-9)
=1/(n-3)(n-1)(n+1)(n+3)
=[{1/(n-3)-1/(n+3)}(1/6)-{1/(n-1)-1/(n+1)}(1/2)](1/8)
与式=Σ[k=4,n] 1/(k^4-10k^2+9)
={(1/1-1/7)(1/6)-(1/3-1/5)(1/2)}(1/8)+
{(1/2-1/8)(1/6)-(1/4-1/6)(1/2)}(1/8)+
{(1/3-1/9)(1/6)-(1/5-1/7)(1/2)}(1/8)+
{(1/4-1/10)(1/6)-(1/6-1/8)(1/2)}(1/8)+……+
[{1/(n-3)-1/(n+3)}(1/6)-{1/(n-1)-1/(n+1)}(1/2)](1/8)
±0になって相殺する法則がみつかればもっと簡単になるはず。とりあえず48で通分か。

174 名前:132人目の素数さん mailto:sage [2020/04/29(水) 16:13:32.89 ID:TVjznIm0.net]
>>166
おっとごめん
1/(k-3)-1/k+3)
= (1/(k-3)+ 1/(k-2)+ 1/(k-1)+ 1/k+ 1/(k+1)+1/(k+2))
-( 1/(k-2)+ 1/(k-1)+ 1/k+ 1/(k+1)+1/(k+2)+1/(k+3))

175 名前:132人目の素数さん mailto:sage [2020/04/29(水) 17:35:35.01 ID:+hdVQcp2.net]
>>167が一番きれいな回答かな

自分は項をまとめようとして
与式=(1/6){1/(1・3・5)+1/(2・4・6)
-1/((n-2)n(n+2))-1/((n-1)(n+1)(n+3))}
までで挫折した
きれいに因数分解されたひとつの項は無理か

176 名前:イナ mailto:sage [2020/04/29(水) 18:47:40.95 ID:pHutbusZ.net]
>>168通分。
>>161
与式=Σ[k=4,n] 1/(k^4-10k^2+9)
=1/105+1/384+1/945+1/1920+……+
1/(n^4-10n^2+9)

第2項/初項=1・3・5・7/2・4・6・8=105/384
第3項/初項=1・3・5・7/3・5・7・9=1/9
第4項/第2項=2・4・6・8/4・6・8・10=1/5
第5項/第3項=3・5・7・9/5・7・9・11=3/11
(休息)

177 名前:132人目の素数さん mailto:sage [2020/04/29(水) 18:59:57.29 ID:xaKwZuxT.net]
数学Tの1次不等式の範囲での解法を教えて下さい。

あるクラスで,生徒が4人ずつのグループを作ったところ,いくつかのグループができたが,何人か余ってしまった。
そこで,先生が2人加わってあらためて6人ずつのグループを作ったところ,グループの数は2つ減り,余った者はいなかった。
このクラスの生徒の数を求めよ。

178 名前:132人目の素数さん mailto:sage [2020/04/29(水) 19:06:37.10 ID:VgSM7Dps.net]
>>172
34人

179 名前:132人目の素数さん mailto:sage [2020/04/29(水) 19:12:05.51 ID:/hSdwJBX.net]
>>170
1項にまとめなくてもいいと思うけど。
-3,-1,1,3 と等間隔に並んでるので、例によって telescoping を
1/(k^4 -10k^2 +9)= 1/{(k-3)(k-1)(k+1)(k+3)}
 = 1/{6(k-3)(k-1)(k+1)}- 1/{6(k-1)(k+1)(k+3)}
 = f(k-1)- f(k+1),
ここに f(k) = 1/{6(k-2)k(k+2)},

(与式)= Σ[k=4,n] {f(k-1) - f(k+1)}
 = f(3) + f(4) - f(n) - f(n+1)
 =(1/6){1/(1・3・5)+ 1/(2・4・6)- 1/((n-2)n(n+2))- 1/((n-1)(n+1)(n+3))}
 =(1/6){1/15 + 1/48 - 1/((n-2)n(n+2))- 1/((n-1)(n+1)(n+3))}
 = 7/480 -(2n+1)(nn+n-3)/{6(n-2)(n-1)n(n+1)(n+2)(n+3)}
 = 7/480 -(2n+1)(N-3)/{6N(N-2)(N-6)},  N=n(n+1).

180 名前:132人目の素数さん [2020/04/29(水) 20:42:11 ID:OCBJWMaU.net]
昨日の衆院予算委員会で枝野が
「政府は、正常性バイアスに陥ってるのではないか?」と尋ねた。

安倍晋三 とかいうアホは
「我々は決して正常性バイアスに陥っていません」
って答弁してるw

正常性バイアスに陥ってない奴は「正常性バイアスに陥ってない!」なんて言わんわなw



181 名前:132人目の素数さん mailto:sage [2020/04/29(水) 20:52:42 ID:secxU92x.net]
スレ間違えてますよ

182 名前:132人目の素数さん mailto:sage [2020/04/29(水) 21:51:39 ID:cEdKTWhK.net]
>>173
中学の連立一次方程式で解ける気がした

183 名前:132人目の素数さん mailto:sage [2020/04/29(水) 22:23:12.78 ID:YfQbj77o.net]
>>172
丸投げになるので全部は書かない
> 4人ずつのグループを作ったところ,いくつかのグループができたが,何人か余ってしまった。
この条件からは不等式を二つ立てることが出来る

184 名前:132人目の素数さん mailto:sage [2020/04/29(水) 22:42:07 ID:/hSdwJBX.net]
>>172
 生徒の人数をn、グループ数をaとする。
 4(a+2)+1 ≦ n ≦ 4(a+2)+3,
 n+2 = 6a,
よりaを消去すると
 31 ≦ n ≦ 37,
このうち n+2 が6の倍数となる(aが自然数となる)ものを探す。

185 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/29(水) 22:52:48 ID:pHutbusZ.net]
前>>171
>>172
4人ずつxグループ作ってa人余って先生が2人加わって6人ずつx-2グループ作ったから、
4x+a+2=6(x-2)
2x=a+14
x=a/2+7
余った人数は1,2,3人のうちどれかだがa/2が正の整数になるにはa=2しかない。
x=2/2+7=1+7=8
あとからクラスに加わって生徒になりすました先生を間引いてクラスの生徒の人数は、
4x+a=4・8+2=34
∴34人

186 名前:132人目の素数さん [2020/04/30(Thu) 09:56:23 ID:PNgPOP0Z.net]
ジョーカーを除いた52枚の裏面向いたトランプから2枚ずつ取り出して数字の合計が大きいほうが勝ちのゲームをする
このとき引き分けとなる確率を求めよ
ただし先攻が取り出した2枚は後攻が取り出す際に戻さないものとする

187 名前:132人目の素数さん mailto:sage [2020/04/30(Thu) 10:44:37 ID:4Bq4TmQS.net]
しょうもな

188 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/30(Thu) 11:18:09 ID:BcTHNGIF.net]
/_/_/人人_/_/_/_
/_/_(_)_)/_/_/_
/_/_( __)/_/_/_
/_/_(^) )/_/_/_
/_/_(υ_)┓_/_/_
/_/◎゙υ┻-◎゙/_/_/_/_/_/キコキコ…… _/_/_/_/_/_/_/_/_/_/_すぺ〜どだい〜ゃへいへいへへい♪ 前>>180は〜とにくら〜ぶへいへいへへい♪ ゆく〜ぞ〜こばぁく〜♪ つっこめつっこめつっこめつっこめへい♪ ふぉあかぁど〜♪

189 名前:132人目の素数さん mailto:sage [2020/04/30(木) 11:33:10.95 ID:lj0AFPzq.net]
俺も答え書いちゃおう
生徒の人数をn、4人ずつにしたときのグループの数をmとする
4(+1)m>n>4m
n+2=6(m-2)
nを消去して計算すると9>m>7
mは自然数であるので8
nは34

190 名前:132人目の素数さん mailto:sage [2020/04/30(木) 11:35:53.33 ID:lj0AFPzq.net]
答案では生徒の人数をn人、グループの数をm個とかって書かないと高校数学でも減点される?
グループの単位って個でいいのかな?
一般的な会話等ではグループの数に単位つけないね



191 名前:132人目の素数さん mailto:sage [2020/04/30(Thu) 11:51:47 ID:st62Vm1Z.net]
>>181
絵札は11, 12, 13と数える?
それとも全て10?

個人的には
21を超えたら負け、Aは11にもできる
のルールが欲しい

192 名前:132人目の素数さん mailto:sage [2020/04/30(Thu) 11:52:34 ID:PNgPOP0Z.net]
>>182あ、難しかった?ww

193 名前:132人目の素数さん [2020/04/30(Thu) 11:54:18 ID:PNgPOP0Z.net]
>>186それぞれに対応する数字でお願いします

194 名前:132人目の素数さん mailto:sage [2020/04/30(木) 13:06:58.98 ID:ypi+LmcL.net]
なぜ回答者が問題を変えようとするのか

195 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/30(Thu) 13:55:00 ID:BcTHNGIF.net]
前>>183
>>181
先攻が引いたカードの数字の合計は0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20のどれかとなる。
先攻が引いたカードの合計が0となる確率は、
(4/13)(15/51)=20/221
後攻が引いたカードの合計が0となる確率は、
(14/50)(13/49)=13/175
たがいが0となる確率は、
(20/221)(13/175)=4/35・17=4/(350+245)=4/595
先攻が引いたカードの合計が1となる確率は、
(1/13)(16/51)+(4/13)(4/51)=2・16/(510+153)=32/663
後攻が引いたカードの合計が1となる確率は、
2(15/50)(3/49)=9/245
たがいが1となる確率は、
(32/663)(9/245)=96/221・245=96/(49000+4900+245)=96/54145
先攻が引いたカードの合計が2となる確率は、
(1/13)(16/51)+(1/13)(3/51)+(4/13)(4/51)=2・16/(510+153)+1/(170+51)=32/663+1/221=35/663
後攻が引いたカードの合計が2となる確率は、
先攻がすでに2を引いている可能性があり2の残り枚数の期待値は3と4のあいだの3に近い3.何枚で、もしも先攻が1を2回引いていたらすなわち2はまだ3+3/35枚ある。
{(3+3/35)/50}(16/49)+(4/50)(3/49)+(14/50){(3+3/35)/49}=

196 名前:54・16/35・25・49+6/25・49+7・108/25・35・49
=(54・16+35・6+7・108)/25・35・49
=(540+324+210+756)/35^3
=(864+966)/35・1225
=1830/5・8575
=366/8575
たがいが2となる確率は、
(35/663)(366/8575)=784/221・1715
……文字化けのため中止します。
求める確率は、
4/595+96/54145+784/221・1715+……
[]
[ここ壊れてます]

197 名前:132人目の素数さん mailto:sage [2020/04/30(Thu) 15:18:19 ID:hxeTxTeP.net]
>>188
絵札は J=11, Q=12, K=13 ってことで。

まず場合の数を求める。
先攻和が奇数2n+1 ・・・・ 16n,
後攻和が奇数2n+1 ・・・・ 16(n-1) + 9 = 16n -7,

先攻和が偶数2n ・・・・ 16(n-1) + 6,
         (異)  (同)
後攻和が偶数2n ・・・・
 異→異  16(n-2)+9 = 16n -23,
 異→同  C(4,2)= 6,
 同→異  16(n-1),
 同→同  1,

198 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/30(Thu) 15:18:26 ID:BcTHNGIF.net]
前>>190
先攻が引いたカードの合計が15になる確率は、
5と10,6と9,7と8,8と7,9と6,10と5の5通り。1枚目が8のとき2枚目の8は3枚。
(1/13)(4/51)4+(1/13)(3/51)=1/17(1+1/13) 14/221
後攻が引いたカードの合計が15になる確率は、
文字化けで中止します。

199 名前:132人目の素数さん mailto:sage [2020/04/30(Thu) 15:47:51 ID:hxeTxTeP.net]
>>191
数字は13以下だから n'=min{n,13-n} として

先攻和が奇数2n+1 ・・・・ 16 n'
後攻和が奇数2n+1 ・・・・ 16n' -7

200 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/30(Thu) 17:26:28 ID:BcTHNGIF.net]
前>>192
絵札に数字ないだろ。ルール勝手に変えるならやらないぜ。



201 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/04/30(Thu) 21:02:14 ID:BcTHNGIF.net]
前>>194
>>181
たがいに合計が2となる確率は1/13・17・25・49
たがいに合計が3となる確率は24/13・17・25・49
たがいに合計が4となる確率は1/13・17・49
たがいに合計が5となる確率は96/13・17・25・49
たがいに合計が6となる確率は、97/13・17・25・49
たがいに合計が7となる確率は、216/13・17・25・49
たがいに合計が8となる確率は、
……(中略)
たがいに合計が26となる確率は、1/13・17・25・49
すべてかぞえて足したら出る。

202 名前:132人目の素数さん mailto:sage [2020/04/30(木) 22:01:20.04 ID:hxeTxTeP.net]
>>191
n" = min{n,14-n}として

先攻和が偶数2n ・・・・ 16(n" -1) + 6,
           (異)  (同)
後攻和が偶数2n ・・・・
 異→異  16(n" -2)+9 = 16n" -23,
 異→同  C(4,2)= 6,
 同→異  16(n"-1),
 同→同  1,

つまり、2枚の和がsの場合と 28-s の場合は同数あるから
 s' = min{s,28-s}を考える

203 名前:132人目の素数さん mailto:sage [2020/05/01(金) 12:28:42.23 ID:kSfPXdSD.net]
>>194
絵札には数字ないから0にする?
なるほど。

204 名前:132人目の素数さん mailto:sage16 [2020/05/01(金) 16:04:05 ID:kSfPXdSD.net]
>>191

>>193

>>196
合計が2n+1となる組合せは
 n' = min{n,13-n} として
 16n' (16n' -7)とおり。

合計が2nとなる組合せは
 n" = min{n,14-n} として
16(n" -1)・(16n" -23)+ 6・16(n" -1)+ 16(n" -1)・6 + 6
=(16n" -13)(16n" -14) とおり。

s= 2, 26     6
s= 3, 25    144
s= 4, 24    342
s= 5, 23    800
s= 6, 22   1190
s= 7, 21   1968
s= 8, 20   2550
s= 9, 19   3648
s=10, 18   4422
s=11, 17   5840
s=12, 16   6806
s=13, 15   8544
s=14     9702
------------------
+      82222

これをすべての組合わせ
 C[52,2]・C[50,2]= 1326・1225 = 1624350,
で割ると
 0.0506184

205 名前:132人目の素数さん mailto:sage [2020/05/01(金) 17:14:28.97 ID:eiMwHEJi.net]
被ってるけど、せっかく作ったので、投下
aaaa型 4*3*2*1 :24
abcc型 4*4*4*3 *2*2 :768 ;a+b=c+c、aとbの入れ替えと、先手・後手の入れ替えで、*2*2
abab型 4*4*3*3 *2*2 :576 
abcd型 4*4*4*4 *2*2*2:2048
−−−−−   aaaa型   abcc型   abab型   abcd型
和が02/26  1     0     0     0 : 24*1  = 24
和が03/25  0     0     1     0 : 576*1 = 576
和が04/24  1     1     1     

206 名前:O : 24+768+576 = 1368
和が05/23  0     0     2     1 : 576*2+2048 = 3200
和が06/22  1     2     2     1 : 4760
和が07/21  0     0     3     3 : 7872
和が08/20  1     3     3     3 : 10200
和が09/19  0     0     4     6 : 14592
和が10/18  1     4     4     6 : 17688
和が11/17  0     0     5     10 : 23360
和が12/16  1     5     5     10 : 27224
和が13/15  0     0     6     15 : 34176
和が14    1     6     6     15 : 38808
合計328888  確率 328888/(52*51*50*49)=839/16575=0.050618401206636500....
[]
[ここ壊れてます]

207 名前:132人目の素数さん mailto:sage [2020/05/01(金) 23:14:19 ID:kSfPXdSD.net]
>>198 (詳細)

・合計が奇数となる組合せは
 16n(16-7)=(8/3){n(n+1)(32n -5) - (n-1)n(32n -37)},
 2Σ[n=1,6] 16n(16-7)= 2・20944 = 41888,

・合計が偶数となる組合せは
 (16n-13)(16n-14)=(2/3){n(128nn -132n +13)-(n-1)(128nn -388n +273)},
 2Σ[n=1,6] (16n-13)(16n-14)+(16・7-13)(16・7-14)
 = 2・15316 + 9702 = 40334,

∴ 41888 + 40334 = 82222,

208 名前:132人目の素数さん [2020/05/01(金) 23:27:14 ID:kSfPXdSD.net]
>>181 (再)
ジョーカーを除いた52枚の裏面向いたトランプから2枚ずつ取り出して数字の合計が大きいほうが勝ちのゲームをする。
絵札については J, Q, K は0と見なし、Aは1とする。
このとき引き分けとなる確率を求めよ。
ただし、先攻が取り出した2枚は後攻が取り出す際に戻さないものとする。

209 名前:132人目の素数さん mailto:sage [2020/05/01(金) 23:49:27 ID:w9lZMBVK.net]
惜しいな
JQKに適当に数字を振っておけば
やらないと宣言した奴の参加を阻めたのに

210 名前:132人目の素数さん mailto:sage [2020/05/02(土) 01:33:26.15 ID:MWPQzP7G.net]
0000型 12*11*10*9  :11880
0a0a型 12*4*11*3 *2*2 :6336
0abb型 12*4*4*3 *2*2 :2304
0abc型 12*4*4*4 *2*2*2 :6144
−−   aaaa型   abcc型   abab型   abcd型   0000型   0a0a型   0abb型   0abc型
和が00   0   0   0   0   1   0   0   0   :11880
和が01   0   0   0   0   0   1   0   0   :6336
和が02   1   0   0   0   0   1   1   0   :24+6336+2304=8664
和が03   0   0   1   0   0   1   0   1   :13056
和が04   1   1   1   0   0   1   1   1   :16152
和が05   0   0   2   1   0   1   0   2   :21824
和が06   1   2   2   1   0   1   1   2   :25688
和が07   0   0   3   3   0   1   0   3   :32640
和が08   1   3   3   3   0   1   1   3   :37272
和が09   0   0   4   6   0   1   0   4   :45504
和が10   1   4   4   6   0   1   1   4   :50904
和が20は前レスの26、19は25、18は24、...11は17と一致
11880+6336+8664+13056+16152+21824+25688+32640+37272+45504+50904=269920
24+576+1368+3200+4760+7872+10200+14592+17688+23360=83640
合計 269920+83640=353560 確率 353560/(52*51*50*49)=8839/162435=0.05441561239880567611...



211 名前:132人目の素数さん mailto:sage [2020/05/02(土) 08:43:38 ID:+DaGDQtd.net]
3次元での直線の方向ベクトルの求め方を教えて貰いたいです

212 名前:132人目の素数さん mailto:sage [2020/05/02(土) 11:39:07 ID:+5iBNPZo.net]
>>204
(x-p)/a = (y-q)/b =(z-r)/c
のとき
(p,q,r)を通る方向ベクトル(a,b,c)の直線

213 名前:132人目の素数さん [2020/05/02(土) 12:29:10.39 ID:kwiB1rT0.net]
a,bを正の定数として、(x/a)^2+(y/b)^2=1が表すだ円をEとする。
αを 0 < α < pi/2 を満たす定数として、
直線 (sinα)x-(cosα)y=0 とだ円Eの交点をA、Bとする。
2点A、Bを焦点とし、Eに接するだ円の長軸の長さは、αによらず一定である。


これが言えるらしいのですが、 どのように示されるでしょうか。

214 名前:132人目の素数さん [2020/05/02(土) 14:21:29.19 ID:f2mAxoSw.net]
学術の巨大掲示板群 - アルファ・ラボ
ttp://x0000.net

数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など

215 名前:

PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
[]
[ここ壊れてます]

216 名前:132人目の素数さん [2020/05/02(土) 14:26:36.85 ID:O6/cp0ZY.net]
連立方程式を解け
@ y=√(3)x
A √(x^2+y^2)=10

自分の答案
B Aに@を代入して√(4x^2)=10
C 2x=10
D よって、x=5

これは正解ですか?

217 名前:132人目の素数さん [2020/05/02(土) 14:29:04.54 ID:8U8E25RH.net]
まちがい

218 名前:132人目の素数さん mailto:sage [2020/05/02(土) 15:59:02 ID:5NedgRMr.net]
ヒント:√(x^2)=xは常に成り立つか?

219 名前:132人目の素数さん mailto:sage [2020/05/02(土) 16:27:29.49 ID:Zrda5TFW.net]
@は原点を通る直線でAは原点中心の円だから交点は2つ

220 名前:132人目の素数さん [2020/05/02(土) 16:42:01 ID:O6/cp0ZY.net]
>>210
ヒント助かりました。
たしかにx=-2だとおかしいですね。



221 名前:132人目の素数さん mailto:sage [2020/05/02(土) 17:40:44 ID:cc3iOZ6v.net]
>>206
 a>b>0 としても一般性を失わない。

AB方向にX軸をとり、垂直方向にY軸をとると
 X =(cosα)x +(sinα)y,
 Y = -(sinα)x +(cosα)y,
もう一つの楕円を
E~: XX/(aa+bb)+ YY/(aa+bb-dd)= 1,
とする。
長半径 √(aa+bb),短半径√(aa+bb-dd),
 d = OA = OB = ab/√{(a・sinα)^2 +(b・cosα)^2},

さて、
 (x/a)^2 + (y/b)^2 - XX/(aa+bb)- YY/(aa+bb-dd)
 = {b^4・(cosα)x - a^4・(sinα)y}^2・dd/[(ab)^4・(aa+bb)(aa+bb-dd)]
 ≧ 0,
等号成立は{ }=0 のとき。
∴ E上の点 (x,y) は
 1 =(x/a)^2 + (y/b)^2 ≧ XX/(aa+bb)+ YY/(aa+bb-dd),
E~の内部または周上にあり、Eに外接する。

222 名前:132人目の素数さん [2020/05/02(土) 17:59:53.74 ID:c32xDSMR.net]
有効数字2桁について教えてください。
340 / 20000と与えられた数字を有効数字2桁で表しなさいとあったら見本では
3.4*10^2 / 2*10^4
= 1.7 * 10^-2
こうなってました。最後はわかったですが、途中の2*10^4では2.0*10^4でもいいのですか?
途中だから気にする必要ありませんか?

223 名前:132人目の素数さん mailto:sage [2020/05/02(土) 18:19:09.98 ID:Zrda5TFW.net]
>>214
なんの計算なの?
20000が誤差のない数字ならそうするのは変な気がする

224 名前:132人目の素数さん mailto:sage [2020/05/02(土) 18:39:29 ID:B0+Dp7us.net]
別に最後に有効数字2桁にしろってだけだから誤差論とかそんな話持ち出す必要ないだろ
途中式なんて2でいいよ

225 名前:132人目の素数さん mailto:sage [2020/05/03(日) 01:02:25.37 ID:agSE6EeK.net]
>>216
なんか20000って書いてあったら本来有効数字1桁になっちゃうので
(位取りを示すだけのゼロを除いた意味のある数字だから)
途中の式は2にしとかんといかんみたいね
本来この式で何か算出するならこれ有効数字2桁にはならん気がするけど
これは数学の練習問題だから最後に有効数字2桁にして終了、と

226 名前:132人目の素数さん mailto:sage [2020/05/03(日) 03:47:27 ID:KZl+esVa.net]
>>213
 a>b>0 は使ってない希ガス・・・・
 α→0, α→π/2 の極限から長半径を √(aa+bb)と予測し、
 A,Bが焦点だから 短半径 √(aa+bb-dd)としたのでござるか。

227 名前:132人目の素数さん mailto:sage [2020/05/03(日) 20:25:20 ID:G4uDJnj7.net]
>>195
イナさんは大学院は東大らしいけど、学歴ロンダリングですか?

228 名前:132人目の素数さん mailto:sage [2020/05/04(月) 01:45:35 ID:cVLFpl3k.net]
すごくしょうもない質問なのですが教えてください
ブラウザゲームでのことです

能力アップ用のポイントが100ポイントあり、攻撃力の数値そのものか攻撃力の上昇率に1ポイントずつ割り振ることができます
数値そのものに振った場合は攻撃力が+10され

229 名前:ワす
上昇率に振った場合は+5%されます
攻撃力の初期値は10で、上昇率は100%を越えます

これを数式化すると、攻撃力の数値に振ったポイントをxとして
(10x+10){1+0.05(100-x)}
なのでしょうか。
そして、その最大値はどう求めれば良いのでしょうか

お願いします
[]
[ここ壊れてます]

230 名前:132人目の素数さん mailto:sage [2020/05/04(月) 01:47:39 ID:cVLFpl3k.net]
>>220
馬鹿すぎて説明が抜けてしまっていました

攻撃力の上昇率を攻撃力の数値にかけたものが、最終的な攻撃力になります
それが最大となるポイントの割り振り方の算出方法を教えていただきたいです



231 名前:132人目の素数さん mailto:sage [2020/05/04(月) 08:28:03 ID:7oZjwskp.net]
ポイントを割り振るとまず先に攻撃力アップが適用されてそれから上昇率が適用されるってことでいいんだよね?
それならそれでいいんじゃないの?
x=59あるいは60のとき1830になって最大だと思う
これとその前後を具体的に計算すれば確かめられる

232 名前:132人目の素数さん mailto:sage [2020/05/04(月) 10:01:20 ID:cVLFpl3k.net]
>>222
ありがとうございます
攻撃力の計算も説明が抜けてしまっていました。攻撃力の数値をまず出して、そこに上昇率をかけます

>>220の式を展開すると59.5x-x^2+120になるのですが、xのとりうる範囲が0≦x≦100である今回の場合、最大値を求めるにはどうすればよいのでしょうか

233 名前:132人目の素数さん mailto:sage [2020/05/04(月) 10:07:46 ID:IZQaY5bV.net]
https://i.imgur.com/SXzlXXf.jpg
この問題解説してください!

234 名前:132人目の素数さん [2020/05/04(月) 10:37:45 ID:jDRWX2Ph.net]
3月の宿題で(1)のみ正解の数弱@shukudai_sujaku

昨年度の大学への数学(大数)での勝率は、

学コンBコースが 1/1 = 100% ,

宿題が 3/10 = 30% でした!

宿題の勝率が低すぎると思うので、

これからは一層精進していきたいです!

https://twitter.com/shukudai_sujaku
(deleted an unsolicited ad)

235 名前:132人目の素数さん mailto:sage [2020/05/04(月) 10:45:23 ID:cVLFpl3k.net]
>>224
重りを吊るす位置が支点から1目盛分ずれるごとに、天秤にかかる負荷も2倍、3倍と増えていきます
二段になっているうちの下側、dとeでいうと、平行にするためにはdとeの比が2:1でなければなりません
これを式で表すと2d=eとなり、満たす組み合わせは2と1、4と2の二通りです

次に上側も同じように考えます
3a+2b=c+3(2d+e)となり、これを満たす組み合わせは
a=3 b=5 c=1 d=4 e=2
となります🤗

236 名前:132人目の素数さん [2020/05/04(月) 11:50:08 ID:Yv1eii45.net]
微分可能関数f(x)が、f(0)=0, f'(0)≠0 のとき、
0に近いaで f(a)<0 となるものがある。

これは感覚的に当たり前にみえるのですが
キチンと示すにはどうすればいいでしょうか。
平均値の定理とかを使うのか。

237 名前:イナ mailto:sage [2020/05/04(月) 12:10:35.07 ID:yAlzGnAp.net]
>>224>>195
D,Eが4s,2sなら右の竿の3目盛に6s掛かるので18目盛sと呼ぶことにする。
A,B,Cが1s,3s,5sのどれかだから、Cが1sなら右の竿全体で1+18=19目盛s。
Aが3sで9目盛s、Bが5sで10目盛sだと左の竿全体で9+10=19目盛sだから釣りあう。

238 名前:132人目の素数さん mailto:sage [2020/05/04(月) 12:29:56.23 ID:7oZjwskp.net]
>>223
展開すると-0.5x^2+59.5x+60じゃないか?
-0.5(x^2-2*59.5x-120)
=-0.5{(x-59.5)^2-59.5^2-120}
でx=59.5は定義域に含まれているのでこのとき最大値をとる
だけどxは整数なのでx=59または60のとき最大値
(二次関数のグラフは頂点を挟んで左右対称だから59.5という整数59と整数60のちょうど中間に頂点があるならx=整数における最大値は59または60のとき)
計算が簡単なほうの60を元の式に代入すれば求まる

239 名前:132人目の素数さん mailto:sage [2020/05/04(月) 13:29:37.63 ID:IZQaY5bV.net]
>>226
>>228
理解できました。ありがとうございました!!!

240 名前:132人目の素数さん mailto:sage [2020/05/04(月) 14:15:29.34 ID:+EkzAyBs.net]
>>227
大学の知識使わないとダメかもしれないですね

高校なら当たり前で良いんじゃないですか?



241 名前:132人目の素数さん mailto:sage [2020/05/04(月) 14:33:33.13 ID:4eE/7Pya.net]
>>227
どこまで定理を使っていいかわからんが、
「微分可能関数 f(x) が x = a で極値をとるならば、 f'(a) = 0」
が使えると仮定すれば証明できる

もし f(0) = 0, f'(0) ≠ 0 のとき、 0 に近い a で f(a) < 0 となるものが1つも存在しなければ、
0 に近い a に対し、常に f(a) ≧ 0 となる。
f'(0) ≠ 0 より、関数 f(x) は x = 0 の近くで定数関数ではないから、 f(0) = 0 より、
0 に近い a に対し、常に f(a) > 0 となる。
したがって、関数 f(x) は x = 0 で極小値 0 をとる。
このとき、「微分可能関数 f(x) が x = a で極値をとるならば、 f'(a) = 0」より、
f'(0) = 0 でなければならない。これは f'(0) ≠ 0 の仮定に矛盾する。

「x = a に近い」とかいう表現は厳密ではないが、高校数学ならこれくらいで十分かな?

242 名前:132人目の素数さん mailto:sage [2020/05/04(月) 15:27:06.36 ID:2c/mgyD3.net]
f'(x) = a ≠ 0 とする。
a > 0 として一般性を 失わない。
f(x) が微分可能なら f'(x) は連続だから、
p < 0 < q をみたす p, q で、
x ∈ (p, q) ならば f'(x) > 0 をみたすものがとれる。
このとき、平均値の定理より
f(p) - f(0) = (p - 0) f'(c) かつ p < c < 0
をみたす c が存在する。
f'(c) > 0、p < 0 であるから
f(p) - f(0) < 0
ゆえに f(p) < f(0) = 0

243 名前:イナ mailto:sage [2020/05/04(月) 15:38:14.51 ID:yAlzGnAp.net]
>>228
>>230すげーな、こんな説明でわかるとは頭いい。

244 名前:132人目の素数さん mailto:sage [2020/05/04(月) 16:05:18.94 ID:+EkzAyBs.net]
>>233
>f(x) が微分可能なら f'(x) は連続だから、


は言えませんよ

245 名前:132人目の素数さん mailto:sage [2020/05/04(月) 16:09:56.20 ID:4eE/7Pya.net]
>>233
>f(x) が微分可能なら f'(x) は連続だから、

ダウト

246 名前:132人目の素数さん mailto:sage [2020/05/04(月) 16:46:16 ID:sAooM0TB.net]
高校数学を逸脱してもいいなら・・・・

f '(0)= m ≠ 0 から
 |x|< δ ⇒ |{f(x) - f(0)}/x - f '(0)| < |m|/2,
となる δ>0 が存在する。本問では
 |f(x)/x - m| < |m|/2,
 m -|m|/2 < f(x)/x < m +|m|/2,
したがって
 m>0 のときは -δ<a<0
 m<0 のときは 0<a<δ
とすれば
 f(a) < -|ma|/2 < 0,

247 名前:132人目の素数さん mailto:sage [2020/05/04(月) 17:24:25 ID:sAooM0TB.net]
>>231
0の近傍の1点でいいなら高校数学の範囲でも可能かも。
(背理法)
0のある近傍Uで f(x)≧ 0 だったと仮定する。
 f '(0)= lim[x→+0] f(x)/x ≧ 0,
 f '(0)= lim[x→-0] f(x)/x ≦ 0,
より f '(0) = 0 となり題意に反する。
∴ U内に f(a)<0 となる点aが存在する。(終)

248 名前:132人目の素数さん mailto:sage [2020/05/04(月) 17:45:03 ID:A+R3J61t.net]
>>229
なるほど。ありがとうございます

249 名前:132人目の素数さん mailto:sage [2020/05/04(月) 17:45:25 ID:sAooM0TB.net]
>>238 は >>232 と同じでした....orz

250 名前:227 [2020/05/04(月) 22:18:45 ID:Yv1eii45.net]
多くの皆さんありがとうございます。



251 名前:132人目の素数さん mailto:sage [2020/05/05(火) 10:06:11 ID:prX7xyHw.net]
>>234
イナさん何歳ですか?

252 名前:132人目の素数さん [2020/05/05(火) 11:05:47 ID:JVvRFsGS.net]
1,2,3と書かれたカードがそれぞれ1枚ずつ箱に入っている。取り出しては戻してを6回繰り返して、1がa回,2がb回,3がc回出たとする。

a=2かつb=2となる確率を教えてください

a,b,cそれぞれ2回ずつなので並び替えが90通りで(90/3^6)と考えましたが自信がないのでお願いします

253 名前:132人目の素数さん [2020/05/05(火) 11:13:59 ID:b2IqdVzK.net]
3月の宿題で(1)のみ正解の数弱@shukudai_sujaku

昨年度の大学への数学(大数)での勝率は、

学コンBコースが 1/1 = 100% ,

宿題が 3/10 = 30% でした!

宿題の勝率が低すぎると思うので、

これからは一層精進していきたいです!

https://twitter.com/shukudai_sujaku
(deleted an unsolicited ad)

254 名前:132人目の素数さん mailto:sage [2020/05/05(火) 11:18:31 ID:R9+M85/5.net]
あってるんじゃね?

255 名前:132人目の素数さん [2020/05/05(火) 14:05:35 ID:ixImTe6Q.net]
aを実数の定数とする時、θ

256 名前:の方程式
「方程式sinθ+cosθ-a=0の解が存在する」と
「円x^2+ y^2=1と直線y+x-a=0が共有点を持つ」が同値になるのは、
x^2+y^2=1がx=sinθ,y=cosθと同値で、
直線y+x-a=0にx=sinθ,y=cosθに代入した形になっているからで合ってますか?
よろしくお願いします。
[]
[ここ壊れてます]

257 名前:132人目の素数さん mailto:sage [2020/05/05(火) 14:14:29 ID:0xKTT1Ut.net]
sinθ+cosθ-a=0を満たすθが存在する



x+y-a=0
x=sinθ
y=cosθ
を満たすθ,x,yが存在する



x+y-a=0
x^2+y^2=1
を満たすx,yが存在する

こんな感じですね

258 名前:132人目の素数さん mailto:sage [2020/05/05(火) 14:39:03 ID:o4OzuClm.net]
ふつうはx=cos, y=sin

259 名前:132人目の素数さん mailto:sage [2020/05/05(火) 14:59:14 ID:RoAyEIMF.net]
>>246 合ってない。

『x^2+y^2=1がx=sinθ,y=cosθと同値』ここが誤り。
例えばx=1,y=0,θ=πとすれば『x^2+y^2=1ならばx=sinθ,y=cosθ』の反例になる。
『x=sinθ,y=cosθならばx^2+y^2=1』は真であるが、逆が偽なので同値ではない。


同値というのは必要十分ということであるから、必要性と十分性を確認すべし。例えば以下のように。

(i)
「θの方程式sinθ+cosθ-a=0の解が存在する」と仮定する。θ=k が解であるとする。
このとき、平面上の点(sink,cosk)は方程式x^2+y^2=1とy+x-a=0をともに満たすのでこの円と直線の共有点となる。
したがって「円x^2+y^2=1と直線y+x-a=0は共有点を持つ」
(ii)
「円x^2+y^2=1と直線y+x-a=0が共有点を持つ」と仮定する。点(s,t)が共有点であるとする。
このときs^2+t^2=1であるから、x軸の正の向きとベクトル(s,t)のなす角をφとするとsinφ=t , cosφ=s となる。
点(s,t)は直線y+x-a=0上の点だからt+s-a=0が成り立つ。代入するとsinφ+cosφ-a=0となるから、
θ=φ は方程式sinθ+cosθ-a=0の解である。したがって「θの方程式sinθ+cosθ-a=0の解が存在する」

260 名前:132人目の素数さん [2020/05/05(火) 16:29:16.97 ID:ixImTe6Q.net]
>>247,248,249
教えて頂きありがとうございます。
「平面上の点(sink,cosk)は方程式x^2+y^2=1とy+x-a=0をともに満たすのでこの円と直線の共有点となる。 」
この部分がまだしっくりこないです。平面上の点(sin k,cosk)はどこから来たのでしょうか?
媒介変数表示が絡んでるとは思うのですが…



261 名前:132人目の素数さん mailto:sage [2020/05/05(火) 17:38:26 ID:MIMl41gh.net]
x=(√2)^x
の解はx=2ですが、これを直感に頼らずに導出する方法はありますか?
極限を使わずに解くことは可能ですか?

262 名前:132人目の素数さん mailto:sage [2020/05/05(火) 17:38:38 ID:0xKTT1Ut.net]
言葉で理解しようとしてもいいですけど、>>247こうやって機械的にやったほうが楽ですよ

263 名前:132人目の素数さん mailto:sage [2020/05/05(火) 17:40:32 ID:0xKTT1Ut.net]
>>251
それ多分もう1つくらい解あると思いますよ

グラフで考えると

264 名前:132人目の素数さん [2020/05/05(火) 17:43:41 ID:227hHAl/.net]
>>251
logとって両辺をxでわるとlog(x)/x=-log(2)/2
左辺の関数の挙動調べて他に解がないか探す
あとx=4も答えだと思う
そもそものx=2,4を探す手続きは直感以外だとよーわからんね

265 名前:132人目の素数さん mailto:sage [2020/05/05(火) 17:45:47 ID:0xKTT1Ut.net]
なるほど、4もそうですね


方程式を解くというのは、基本的に場当たりなんですよ
2次方程式とか3次方程式とか簡単なやつは統一的なやり方が知られているていうだけです

266 名前:132人目の素数さん [2020/05/05(火) 17:48:04 ID:ixImTe6Q.net]
aを実数の定数とする時、θの方程式
「方程式sinθ+cosθ-a=0の解が存在する」と
「円x^2+ y^2=1と直線y+x-a=0が共有点持つ」

f(θ)=sinθ+cosθ-aで、横軸θ、縦軸f(θ)のグラフであるが、sinθとcosθがx座標,y座標を表すので、直線y+x-a=0と書き直せる。ただし、定義域-1≦x≦1,値域-1≦y≦1
かつx^2+y^2=1を満たす。

ここまでで何か間違っていますでしょうか

267 名前:132人目の素数さん mailto:sage [2020/05/05(火) 19:57:05 ID:H2fT6dc1.net]
>>251
 x = - 0.766664695962123
が解でないことは
 x < 0 <(√2)^x
から明らかです。。。

268 名前:132人目の素数さん mailto:sage [2020/05/05(火) 20:23:17 ID:H2fT6dc1.net]
x^a = a^x, x≠a
の解は

x = -{a/log(a)}W(-log(a)/a)  (a>e)

x = -{a/log(a)}W(log(a)/a) と
 = -{a/log(a)}W_(-log(a)/a)   (1<a<e)

269 名前: mailto:sage [2020/05/05(火) 21:18:28.83 ID:LL4x1+Ae.net]
>>234
>>251
x=(√2)^x
x=(2^(1/2))^x
x=(2^x

270 名前:)^(1/2)
x^2=2^x
y=x^2と2^xのグラフは、
点(-0.7666646962123,0.587774756),点(2,4),点(4,16)の3点で交わるから、
x=-0.7666646962123,2,4
_____∩ っ゙___>>243
\ ((^_-)  /みっつ\
\\щ⌒υ、 /|\\\\
 ̄ ̄ ̄ ̄|υ/|、\\\\
________「 ̄|\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
[]
[ここ壊れてます]



271 名前: mailto:sage [2020/05/05(火) 21:29:41.21 ID:LL4x1+Ae.net]
>>259括弧とアンカーと答え訂正。
>>251
x=(√2)^x──@
x={2^(1/2)}^x
x=(2^x)^(1/2)
x^2=2^x
y=x^2と2^xのグラフは、
点(-0.7666646962123,0.587774756),点(2,4),点(4,16)の3点で交わり、
x=-0.7666646962123,2,4が答えの候補として考えられるが、@式は右辺が正であるから、この問題の場合は前出の問題とは異なりx>0の条件下で考える必要がある。
∴x=2,4
_____∩ っ゙___>>242
\ ((^_-)  /みっつ\
\\щ⌒υ、 /|\\\\
 ̄ ̄ ̄ ̄|υ/|、\\\\
________「 ̄|\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

272 名前:132人目の素数さん mailto:sage [2020/05/05(火) 21:59:11 ID:RoAyEIMF.net]
>>250
>平面上の点(sin k,cosk)はどこから来たのでしょうか?

『「θの方程式sinθ+cosθ-a=0の解が存在する」と仮定する。θ=k が解であるとする。』ここから来ています。
解kが存在することを仮定しているのですから、点(sink,cosk)が存在していることは明らかでしょう。


>>256
>aを実数の定数とする時、θの方程式「方程式sinθ+cosθ-a=0の解が存在する」と「円x^2+ y^2=1と直線y+x-a=0が共有点持つ」
が、何なのですか?2つの命題を併記しているだけ。主語のみで述語がなく、文章としての体裁をなしていません。

>f(θ)=sinθ+cosθ-aで、
これはおそらくf(θ)の定義なのだと思うのですが

>横軸θ、縦軸f(θ)のグラフであるが、
今度は述語だけで主語がなく意味不明です。

>sinθとcosθがx座標,y座標を表すので、直線y+x-a=0と書き直せる。
“何を”書き直したのかが不明なので正誤の判断をしようがありません。

>ただし、定義域-1≦x≦1,値域-1≦y≦1かつx^2+y^2=1を満たす。
x^2+y^2=1であれば必然的に-1≦x≦1かつ-1≦y≦1ではありますが、何のための但し書きなのかはわかりません。

>ここまでで何か間違っていますでしょうか
すべてにおいて、「間違っている」または「意味不明な文章のため正誤の判断が不能である」または「私の読解力が不足している」
だと思われます。申し訳ありません。

273 名前:132人目の素数さん mailto:sage [2020/05/06(水) 02:38:40 ID:f7XA6HdU.net]
>>259-260
小数点下 8,9桁目を落としたのか 9,10桁目を落としたのか、
どっちだろう・・・・?

274 名前:132人目の素数さん [2020/05/06(水) 03:04:21 ID:4/VZ93xA.net]
>>252,261
aを実数の定数とする時、θの方程式
sinθ+cosθ-a=0について、解が0≦θ≦πの範囲に存在するようなaの値の範囲を求めよ。

ちょっと分からないところが多すぎて、うまく言えないのですが、直線y+x-a=0はどうやって導かれるのでしょうか?
x=sinθ,y=cosθだと、地域や定義域は-1≦x≦1でsinθ+cosθ-a=0を直線y+x-a=0定義域は全実数なので、変形するのは無理があると思うのですが、分かりづらくて申し訳ないです。よろしくお願いします。

275 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/06(水) 03:50:11 ID:bPWrG9K3.net]
前>>260修正申告させていただきます。
小数第9,10位が抜けてました。
>>251
x=(√2)^x──?
x={2^(1/2)}^x
x=(2^x)^(1/2)
x^2=2^x
y=x^2と2^xのグラフは、
点(-0.766664695962123,0.587774756),点(2,4),点(4,16)の3点で交わり、
x=-0.766664695962123,2,4が答えの候補として考えられるが、?式は右辺が正であるから、この問題の場合は前出の問題とは異なりx>0の条件下で考える必要がある。
∴x=2,4

276 名前:132人目の素数さん mailto:sage [2020/05/06(水) 06:40:03.65 ID:W1iQIMkL.net]
>>263
こんなに色々と説明されてなおこれだけチンプンカンプンなことが書けるレベルで同値変形がわかってないのなら、
わざわざ同値変形を用いてオサレに解こうなどとせず普通に三角関数の合成でやればええやろ。

……最初からきちんと問題文を書いてればこれだけ迷走することもなかったろうに。

277 名前:132人目の素数さん mailto:sage [2020/05/06(水) 06:53:06 ID:YoZ82m0h.net]
>>264
x=sinθ, y=cosθじゃなくてx=cosθ, y=sinθだって言ってんだろ無能

278 名前:132人目の素数さん mailto:sage [2020/05/06(水) 06:53:29 ID:YoZ82m0h.net]
>>263
x=sinθ, y=cosθじゃなくてx=cosθ, y=sinθだって言ってんだろ無能

279 名前:132人目の素数さん [2020/05/06(水) 10:42:04 ID:4/VZ93xA.net]
>>252,261
aを実数の定数とする時、θの方程式
sinθ+cosθ-a=0について、解が0≦θ≦πの範囲に存在するようなaの値の範囲を求めよ。

ちょっと分からないところが多すぎて、うまく言えないのですが、直線y+x-a=0はどうやって導かれるのでしょうか?
x=cosθ,y=sinθだと、地域や定義域は-1≦x≦1でsinθ+cosθ-a=0を直線y+x-a=0定義域は全実数なので、変形するのは無理があると思うのですが、分かりづらくて申し訳ないです。よろしくお願いします。

280 名前:132人目の素数さん [2020/05/06(水) 11:06:05 ID:4/VZ93xA.net]
>>265
分からないから、分かるようにしたいので、教えて下さい。



281 名前:132人目の素数さん mailto:sage [2020/05/06(水) 11:58:04.14 ID:CSB0V6zc.net]
>>266
>>267
何で2回書くんだよ無能

282 名前:132人目の素数さん mailto:sage [2020/05/06(水) 12:00:44.20 ID:nds0vJc2.net]
>>269
侮ふんふん数図譜ん解

283 名前:132人目の素数さん mailto:sage [2020/05/06(水) 12:02:4 ]
[ここ壊れてます]

284 名前:9.62 ID:lyeyR/vj.net mailto: >>269
グラビアはレベルアップを食べるって設定、オシマイケル
[]
[ここ壊れてます]

285 名前:132人目の素数さん mailto:sage [2020/05/06(水) 12:04:43.02 ID:CxmybpNr.net]
>>263

sinθ+cosθ-a=0を満たすθが存在する



x+y-a=0
x=sinθ
y=cosθ
を満たすθ,x,yが存在する



x+y-a=0
x^2+y^2=1
を満たすx,yが存在する


もう一度同じこと書きますね
式変形だけではなく、一番最後の行にそれぞれ書かれている、〜が存在する、という文章に特に注目してください

あなたの定義域云々の話は、上の変形では、なにが存在するならば何何も存在しなければならない、という話に置き換わっていることがわかりますね

式だけ追いかけるから、そういう定義域云々の話が曖昧になってるのですよ

286 名前:132人目の素数さん [2020/05/06(水) 12:50:09 ID:j+bofN9X.net]
>>273
ありがとうございます。

今の自分の頭の中の理解では
sinθはy軸を表せる(-1≦x≦1)、cosθはx軸を表せる(-1≦y≦1)が、定義域や値域は取り敢えず無視して、
題意の方程式が解を持つ時、sinθとcosθがy軸,x軸上の点を表しているから、y+x-a=0の方程式上の点になりうる。
またこの時、その解はx^2+y^2=1上にある点でもあるので、2つの方程式を満たす値が解となる。
という理解をしてるのですが、合ってますでしょうか?

287 名前:132人目の素数さん mailto:sage [2020/05/06(水) 12:57:21 ID:CxmybpNr.net]
>>274
間違ってはないですけど、それでも定義域云々の話とか、どっからx^2+y^2=1でてきたのかとか曖昧になってますよね

>>273みたいに記号的に全ての情報を整理するだけで全て話が丸く収まるのですよ

288 名前:132人目の素数さん [2020/05/06(水) 13:30:00.57 ID:j+bofN9X.net]
x^2+y^2=1はcosθとsinθを満たす解θが存在するとき、解が円周上の点にあるから、で大丈夫ですよね?
存在する、という言葉の重要性が身に染みて分かりました。
ありがとうございました。

289 名前:132人目の素数さん [2020/05/06(水) 13:33:40.60 ID:fNUMVfac.net]
座標空間において、(2,0,0), (0,2,0), (2,0,2√2) を頂点とする三角形(周及び内部)を、
z軸の周りに一回転させてできる立体の体積を求めよ。

この問題なんですが、これ立体になりますか? 曲面にしかならなくないですか。
体積0?

290 名前:132人目の素数さん mailto:sage [2020/05/06(水) 13:47:53.97 ID:b8hHjaAL.net]
z軸に垂直な平面による断面がドーナツみたいになる



291 名前:132人目の素数さん mailto:sage [2020/05/06(水) 13:50:16.57 ID:hVWkN8c/.net]
>>277
マジレスすると、「z軸」の周りに一回転だから、ちゃんと立体になる
シャボン玉の内側の体積を求めよってことでしょ

292 名前:132人目の素数さん mailto:sage [2020/05/06(水) 14:08:59.71 ID:He9iS1Ua.net]
>>278が正解かな

半径2, 高さ2√2の円柱から
半径√2の中身をくり抜く
内側の点(1, 1, √2) と外側の点(2, 0, 2√2)の間に
糸を張って、回転させながら切る

完成形は中身が切られたバウムクーヘン
zで場合分けして断面の面積を求め
積分すればよい

293 名前:132人目の素数さん mailto:sage [2020/05/06(水) 16:16:41 ID:f7XA6HdU.net]
>>278
z軸から最も遠い点は(2,0,z)だから、
 ドーナツの外半径は R=2
z軸にで最も近い点と(内半径)^2 は
 (1,1,z) rr=2  (0≦z≦√2)
 (z/√2, 2-z/√2, z) rr = 4 - z(2√2 -z) (√2≦z≦2√2)
断面積は
S(z)= π(RR - rr)= π(4 - rr)
  =(4-2)π = 2π  (0≦z≦√2)
  = πz(2√2 - z)  (√2≦z≦2√2)

V =(2√2)π + ∫[√2, 2√2]S(z)dz
 =(2√2)π + π∫[√2, 2√2]z(2√2 - z)dz
 =(2√2)π +(π/2)∫[0, 2√2]z(2√2 - z)dz
 =(2√2)π +(π/12)(2√2)^3
 =(2√2)π + (4√2)π/3
 =(10/3)(√2)π,

内面の下半分は円筒で、上半分は一葉双曲面です。
z方向に√2倍した点は糞問です。z/√2 = ζ とおいて解いた方がいいかもね。

294 名前:132人目の素数さん mailto:sage [2020/05/06(水) 16:28:26 ID:f7XA6HdU.net]
しかし、直線
 (z/√2, 2-z/√2, z)
をz軸のま

295 名前:りに回転すると一葉双曲面
 xx + yy -(z-√2)^2 = 2
になるのは面白い。つまり
 一葉双曲面も円筒も直線を集めたものだ(?)
と云うこと
[]
[ここ壊れてます]

296 名前:132人目の素数さん mailto:sage [2020/05/07(木) 11:23:03.32 ID:92UtUlkK.net]
あるある

297 名前:132人目の素数さん [2020/05/08(金) 10:28:58 ID:WmDpVhCu.net]
3月の宿題で(1)のみ正解の数弱@shukudai_sujaku

昨年度の大学への数学(大数)での勝率は、

学コンBコースが 1/1 = 100% ,

宿題が 3/10 = 30% でした!

宿題の勝率が低すぎると思うので、

これからは一層精進していきたいです!

https://twitter.com/shukudai_sujaku
(deleted an unsolicited ad)

298 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/08(金) 11:33:05 ID:0lfGvHm4.net]
前>>264
>>277
回転体をz=tで切った断面積は円を等間隔で重ねた二重円のあいだの領域で、
π2^2-π{√2+(2-√2)t/2√2}^2
=π{4-2-(2-√2)t-(6-4√2)t^2/8}
=π{2-(2-√2)t-(3-2√2)t^2/4}
回転体の体積Vは、
V=π∫[t=0→2√2]{2t-(2-√2)t^2/2-(3-2√2)t^3/12}
=π{2(2√2)-(2-√2)4-(3-2√2)(4√2)/3}
=π(4√2-8+4√2-4√2+16/3)
=(4√2-8/3)π

299 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/08(金) 12:04:03 ID:0lfGvHm4.net]
前>>285体積Vの計算式の一部が抜けてたので訂正。
>>277
回転体をz=tで切った断面積は円を等間隔で重ねた二重円のあいだの領域で、
π2^2-π{√2+(2-√2)t/2√2}^2
=π{4-2-(2-√2)t-(6-4√2)t^2/8}
=π{2-(2-√2)t-(3-2√2)t^2/4}
回転体の体積Vは、
V=π∫[t=0→2√2]{2-(2-√2)t-(3-2√2)t^2/4}dt
V=π[t=0→2√2]{2t-(2-√2)t^2/2-(3-2√2)t^3/12}
=π{2(2√2)-(2-√2)4-(3-2√2)(4√2)/3}
=π(4√2-8+4√2-4√2+16/3)
=(4√2-8/3)π

300 名前:132人目の素数さん mailto:sage [2020/05/08(金) 18:02:59 ID:HHkxSB8A.net]
問:log(x+1)/xの増減を調べ、グラフを書け

微分しても解がわかりません、教えて下さい



301 名前:132人目の素数さん mailto:sage [2020/05/08(金) 23:08:54.64 ID:1M9gK9xG.net]
ってか、高校生ってこんなレベル高い数学やってるの…

302 名前:132人目の素数さん mailto:sage [2020/05/09(土) 00:19:00 ID:dz3/aCOm.net]
>>287
x/(x+1)-log(x+1)=0 の解がわからんということやね?

まずx=0はこの方程式の解である。代入すればわかる。
以下に、これ以外の解が存在しないことを示す。
g(x)=x/(x+1)-log(x+1) とおくと
g'(x)=-1/(x+2)^2 で常に g'(x)<0 だからg(x)は単調減少。
したがって関数 y=g(x) のグラフとx軸との交点はx=0の1点のみである。

303 名前:132人目の素数さん mailto:sage [2020/05/09(土) 00:24:32 ID:dz3/aCOm.net]
間違えた。
>>289の下から2行目の最初の式は g'(x)=-1/(x+1)^2

304 名前:132人目の素数さん mailto:sage [2020/05/09(土) 01:44:29 ID:dz3/aCOm.net]
>>287、>>288-289
何度もすみません。ひどく間違いまくってますね。
再度書き直しておきます。申し訳ありません。

g(x)=x/(x+1)-log(x+1) とおくと g'(x)=-x/(x+1)^2
-1<x<0 の範囲で g'(x)>0、0<x の範囲で g'(x)<0 であるから
g(x)は x=0 で最大値 g(0)=0 をとる。
すなわち、-1<x の範囲で常に g(x)≦0 で、等号成立は x=0 のとき
したがって、g(x)=0 の解は x=0 のみ

305 名前:132人目の素数さん mailto:sage [2020/05/09(土) 07:58:36 ID:JDAEOS8b.net]
>>291
ありがとうございます

306 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/09(土) 11:48:43 ID:N64unEQc.net]
前>>286別解。
>>277
回転体は円柱から円錘台を引いた立体で、
円柱の体積は、
π2^2・2√2=8π√2──?
円錘台の体積は、円錘の頂点がz軸上の(0,0,-c)にあり底辺の異なる(底面積が4πと2πの)円錘の体積の差で表され、
4π(c+2√2)/3-2πc/3
=2πc/3+8π√2/3──?
??より求める回転体の体積は、
8π√2-(2πc/3+8π√2/3)}
=(16√2/3-2c/3)π──?
y軸の+∞方向からxz平面を見ると、
三角形の相似比より、
c:c+2√2=√2:2
2c=c√2+4
c=4/(2-√2)
=4(2+√2)/(2^2-2)
=4+2√2
?に代入し、回転体の体積は、
{16√2/3-2(4+2√2)/3}π
=(4√2-8/3)π

307 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/09(土) 11:57:55 ID:N64unEQc.net]
前>>293積分したら負け。
>>286のようにインテグラルを使うのもありだけど、円柱からxy平面を突き抜けた円錐を引いて引きすぎたz≦0部分の円錐を足す感じだと積分しなくていい。

308 名前:132人目の素数さん [2020/05/09(土) 18:29:46 ID:efH/9jmP.net]
>>293
考え方だけ説明したらいいのに
計算過程まで書くってどうなん?
2c=c√2+4
c=4/(2-√2)
こことか明らかに冗長だろw
そりゃ大学入試の解答は丁寧に書かなきゃいけないけど
掲示板の回答でそこまで丁寧に書く理由は何よ?

309 名前:132人目の素数さん mailto:sage [2020/05/09(土) 18:43:12.72 ID:5jnwMZIf.net]
そもそも答えも間違ってるだろこのオッサン

310 名前:132人目の素数さん [2020/05/09(土) 18:45:41.10 ID:efH/9jmP.net]
スクロールで指が疲れるんだよね
答えは考え方と結果だけでいいだろ
式変形なんて誰が見たいんだよ



311 名前:132人目の素数さん [2020/05/09(土) 20:03:22 ID:JtXq3kmY.net]
変数と引数とパラメーターって同じものなんすか?

312 名前:132人目の素数さん [2020/05/10(日) 01:03:11 ID:+TXDayVt.net]
ax^2+bx+cを平方完成して
a(x+b / 2a)^2 - b^2 / 4a +c
から
a(x+b / 2a)^2 - b^2 -4ac / 4a
になぜなるのでしょうか。

- b^2 / 4a +c
この部分の通分したら符号が変わるのがよくわかりません

313 名前:132人目の素数さん mailto:sage [2020/05/10(日) 01:13:54 ID:lFotppoo.net]
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )

314 名前:132人目の素数さん [2020/05/10(日) 01:45:56 ID:cCujn1kS.net]
病気を診断するための検査を行う。実際に病気にかかっている人を検査すると
97%の確率で陽性と判定される。一方、病気にかかっていない人を検査しても
6%の確率で嘘の陽性と判定されてしまう。
実際に病気にかかっている人の占める割合が2%、病気にかかっていない人は
98%であることが判明している。
今、無作為に選んだ1人を検査して「陽性」と判定された時、この人が
本当に病気にかかっている確率は何%か。

315 名前:132人目の素数さん mailto:sage [2020/05/10(日) 05:25:36 ID:lQyzLmPX.net]
24.8%

316 名前:132人目の素数さん mailto:sage [2020/05/10(日) 07:40:34 ID:k6cYVMDB.net]
>>299
-p+q=-(p-q)
これがわからないということ?

317 名前:132人目の素数さん mailto:sage [2020/05/10(日) 10:26:30 ID:fEJONXHw.net]
n^2が3の倍数として

n^2=3k
n=√(3k)...?

と考えるのと

n^2=n×nとし
n×n=3k
n=3k/n...?

形が違っちゃうんだけどなんでですか?

n=6として考えると
上の式も下の式もどちらもあってるんだけど。。。

6^2=3×12
6=√(3×12)=6

6×6=3×12
6=3×12/6=6

?と?から言えるのは
√(3k)=3k/n
n/3k=1/√(3k)
n=3k/√(3k)

よくわかんないんですけど。。。

318 名前:132人目の素数さん mailto:sage [2020/05/10(日) 10:26:41 ID:zIWxqOun.net]
1万人あたりで考える。
病気にかかっている人が200人、病気にかかっていない人が9800人。
病気でかつ「陽性」と判定される人が 200×0.97 = 194人
病気でなくて嘘の陽性と判定される人は 9800×0.06 = 588人
「陽性」と判定された人の病気率は
 194/(194+588)= 0.24808184

319 名前:132人目の素数さん mailto:sage [2020/05/10(日) 10:30:08 ID:lQyzLmPX.net]
>>304
俺のウンコをおまえにじかに食わせたい

320 名前:304 mailto:sage [2020/05/10(日) 10:52:03 ID:fEJONXHw.net]
あ、さっきの続きで
両辺を√(3k)で割ると

√(3k)×n=3k
?より
√(3k)=n なので
√(3k)×n=n^2
といえるから
いいのか。。。

間違ってる???



321 名前:132人目の素数さん mailto:sage [2020/05/10(日) 10:52:33 ID:MFXsv5wt.net]
>>304
書いてる式はすべて正しいから何がわかってないのかわからんが
>形が違っちゃうんだけどなんでですか?
多分この部分が質問なのだろう。

形が違ってしまう理由ということであれば、「式変形の過程が違うから」です。
「形が違うことに対して疑問を感じる」理由ということであれば、式の表し方が一意であるという誤った思い込みが原因でしょう。

同じ意味の式を様々な形に同値変形できるのは当然のこと。n=√(3k)もn=3k/nもn=3k/√(3k)も(nが自然数であれば)全く同じことを表す式です。
誤った思い込みの原因として、例えば「n=1」が答えとなるような問題で「n=3」となることがあり得ない、というような状況と混同しているものと思われます。
あなたが陥っている状況は、「n=1」が答えとなる問題で「n=3-2」とか「n=2-n」とかいう式が出てきて「形が違う?なんで!?」と言っているようなものです。

322 名前:304 mailto:sage [2020/05/10(日) 10:52:54 ID:fEJONXHw.net]
割るとじゃなくて、掛けるとだった

323 名前:304 mailto:sage [2020/05/10(日) 10:55:16 ID:fEJONXHw.net]
>>308
よく理解できました
詳しく説明頂きありがとうございます

324 名前:132人目の素数さん mailto:sage [2020/05/10(日) 13:32:2 ]
[ここ壊れてます]

325 名前:4 ID:ic375w3o.net mailto: >>298
辞書の引き方を覚えろ
[]
[ここ壊れてます]

326 名前:132人目の素数さん mailto:sage [2020/05/10(日) 14:20:01 ID:wFZF+maS.net]
(2)の考え方と(3)の積分区間の決め方がいまいちよくわからないです
https://i.imgur.com/Nx7qppb.jpg
https://i.imgur.com/Dk0Jnxx.jpg

327 名前:132人目の素数さん mailto:sage [2020/05/10(日) 14:34:58.36 ID:lQyzLmPX.net]
>>312
解説に書いてある通り

328 名前:132人目の素数さん mailto:sage [2020/05/10(日) 20:29:18 ID:cCujn1kS.net]
>>302 >>305
ありがとうございます。
自分で計算した数値が予想していたよりもかなり低いんで心配していたんですが、やっぱり合ってるんですね。
感覚的に「97%の確率で陽性と判定」ならもっと大きな確率になるだろうと思っていたんですが・・・

329 名前:132人目の素数さん mailto:sage [2020/05/10(日) 20:35:06.10 ID:k6cYVMDB.net]
有病率が低ければ偽陽性だらけになるからね
健康診断では見逃しをなくすために検査の感度を上げるので特異度はたいてい下がる
しかも健康診断の場合有病率は低いので要精密検査と判定されてもほとんどの人は偽陽性

330 名前:132人目の素数さん mailto:sage [2020/05/10(日) 20:43:40.72 ID:i7+eD6ZC.net]
これがベイズの定理の不思議なところですよね



331 名前:132人目の素数さん mailto:sage [2020/05/10(日) 23:49:35 ID:mTkSwBtB.net]
処女かどうかを診断するための検査を行う。実際に処女をを検査すると
97%の確率で処女と判定される。一方、非処女を検査しても
6%の確率で処女と判定されてしまう。
実際に処女の占める割合が2%、非処女は98%であることが判明している。
今、無作為に選んだ1人を検査して「処女」と判定された時、この人が
本当に処女である確率は何%か。

332 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/11(月) 02:09:11 ID:GdloQXWX.net]
前>>294
>>317
0.02・0・97・100/(0.02・0.97+0.98・0.06)
=1.94/(0.0194+0.0588)
=19400/782
=9700/391
=24.808184143225……(%)

333 名前:132人目の素数さん mailto:sage [2020/05/11(月) 02:31:58 ID:aBpWM8d5.net]
>>312
問題6
 xy平面上の曲線 y=√x と直線 y=0 と直線 x=1 で囲まれた図形をx軸の周りに1回転して得られる立体をDとし、その体積をVとする。
 0<t<1をみたす定数tについて、Dのうち z≧t 内にある部分の体積をV_1とし、Dのうち z≦t 内にある部分の体積をV_2とする。
 このとき、以下の問いに答えよ。
 (1) Vを求めよ。
 (2) 0<s<1 をみたす定数sについて、Dの側面の曲面と平面z=sとの交線上の点をP(p,q,s)とする。
  このとき、p を q,s を用いて表わせ。
 (3) Dを平面z=sで切ったときの切り口の面積をsを用いて表わせ。
 (4) sinθ=t をみたす定数θ(0<θ<π/2)を定める。V_1をθを用いて表わせ。
 (5) 極限値 lim[t→+0] (V_2-V_1)/t を求めよ。

334 名前:132人目の素数さん mailto:sage [2020/05/11(月) 18:35:14 ID:yyBcbv3U.net]
10種のカードから一枚引く
そのカードを戻す
これ12回行う
12回のうちに10種のカードを全て一回以上引く確率

これってどうやって求めたら良い?

335 名前:132人目の素数さん mailto:sage [2020/05/11(月) 18:50:09 ID:NP5odrxY.net]
10回で10種を引く確率
10回までに9種を揃え、11回目に最後の1種を引く確率
11回目までに9種を揃え、12回目に最後の1種を引く確率
を順に求めて足し算する

より一般的には、確率は超幾何級数を用いて表される
70回で25種を揃える確率の例
https://medaka.5ch.net/test/read.cgi/amusement/1272889585/18

336 名前:132人目の素数さん mailto:sage [2020/05/11(月) 18:55:09 ID:xyPfIX/Z.net]
>>321
なるほど……
10回で10種は10!/10^10であってるよね?

337 名前:132人目の素数さん mailto:sage [2020/05/11(月) 19:17:59.55 ID:NP5odrxY.net]
はい、その通りです

338 名前:132人目の素数さん mailto:sage [2020/05/11(月) 19:46:02 ID:jZfeOr2F.net]
10種を12回でだと
1種類だけ3個であとバラバラ
2種類が2個ずつであとバラバラ
ってことで計算したほうが簡単じゃないか?

339 名前:132人目の素数さん mailto:sage [2020/05/12(火) 07:03:17 ID:6F2V66NY.net]
・1種類だけ3個であとバラバラの場合 "three cards"
 12 →{9,3}  C[12,3] = 220,
 10種類から1種類を選ぶ  C[10,1] = 10,
 220・10・9! = 2200・9! (通り)

・2種類が2個ずつであとバラバラの場合 "two pair

340 名前:s"
 12 →{8,2,2}  C[12,4] C[4,2] = 495・6 = 2970,
 10種類から2種類を選ぶ  C[10,2] = 45,
 2970・45・8! = 133650・8! (通り)

したがって
 (133650・8! + 2200・9!)/(10^12)
 = 0.006187104
[]
[ここ壊れてます]



341 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/12(火) 16:33:33 ID:DPW09ZJu.net]
前>>318>>319(1)2/3

342 名前:132人目の素数さん mailto:sage [2020/05/12(火) 18:42:40 ID:f2a83Z/n.net]
>>326
面積求めてどーすんだよ小僧

343 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/12(火) 22:25:41 ID:DPW09ZJu.net]
前>>326
>>319(1)π
V=π?[t=0→1]tdt
=π(1/2)
=π/2

344 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/12(火) 22:29:06 ID:DPW09ZJu.net]
前>>328訂正
(1)V=π/2

345 名前:132人目の素数さん mailto:sage [2020/05/12(火) 22:41:08 ID:JxKxPdjg.net]
将人先輩、まだ働かんのか

346 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/13(水) 00:14:20 ID:2Ei4DM8G.net]
前>>329
>>330チャンスもらえりゃいつでも出ていくぜ。
でもこれは上が決めることだから。
それに自粛だろ、今は(・..・)
なに言ってんだ、数学板で。

347 名前:132人目の素数さん [2020/05/13(水) 00:34:26.95 ID:WQC4vLqW.net]
2の累乗で、
各桁の数字がすべて偶数であるもの(例えば2,4,8,64,2048,・・・)
は無数に存在しますか?

348 名前:132人目の素数さん mailto:sage [2020/05/13(水) 05:26:40 ID:ApfKWGvP.net]
>>332
高校数学の問題ではない
2^3789535319以下ではその5つだけ

349 名前:132人目の素数さん [2020/05/14(Thu) 10:00:48 ID:yUsAr7Ai.net]
質問

高校の数学で、円周率πの「計算可能な定義」ってありましたっけ?

「計算可能な」というのをわざわざつけた理由は
「円周と直径の比」という定義だと、
円周の長さが計算できないと数値が出せないので

350 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:04:41 ID:2iQrnbhX.net]
円周と直径の比以外の定義なんてあるの?



351 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:15:08 ID:yUsAr7Ai.net]
>>335
ま、定義の仕方はいくらでもあると思いますが

じゃ、円周率の定義は「円周と直径の比」だとして
円周の長さの(円周率を使わずに)計算して
直径との比から円周率を求めるってこと
高校でやったっけ?

352 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:23:05 ID:44IPwDRu.net]
円周率の定義は円周と直径の比でしょ
どうしても高校数学の範囲内で計算したいなら、
円に外接する正多角形と内接する正多角形を使って挟みこめばいいんじゃね
面積を使ってもいいし、周長を使ってもいい

353 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:30:51 ID:yUsAr7Ai.net]
>>337
あ、計算の仕方は知ってます

具体的にやるんなら、直角から半角公式を反復適用すればできます
平方根までしか使わないから、計算だけなら中学生でもできますね

紀元前にアルキメデスがやったことですけど
16世紀のヴィエトまで、根本的な進歩がなかったわけで
アルキメデスがいかに先進的だったかわかりますね

それはさておき

・・・やっぱりわざわざ数値を出すことはしなかったですよねぇ・・・

ま、だから、東大入試のあの問題が、神問だっていわれるわけですけど
https://mathtrain.jp/pi305

354 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:41:17 ID:44IPwDRu.net]
他の定義を使うなら、それが円周と直径の比に等しいことを示さないといけないけど
高校数学の範囲じゃ無理じゃね

355 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:46:59 ID:yUsAr7Ai.net]
>>339
そういうことではなくて・・・

一方で3.14とかいっといて、
もう一方でその数値をどうひねくりだしたか
最後まで教えないってキモチ悪くないのかな?
ってことですよ

大抵の人って数学は高校までで終わりでしょ?

円に関して最後までオチがないってのはねぇ・・・

356 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 10:55:20 ID:j58YZD2z.net]
sin(x)=0の最小の正の解とかでええやろ、ニュートン法とかで好きな精度まで計算しやれ

357 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 11:05:01 ID:2iQrnbhX.net]
>>340
3よりちょっと大きいってことはやったろ
そのときに多角形をどうのこうのって話もあったような気がする

358 名前:けどなあ []
[ここ壊れてます]

359 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 11:15:11 ID:44IPwDRu.net]
区分求積法で計算してやればいいんじゃね
高校数学の積分はどうなのって話はあるけど、結果だけ認めれば計算はどうにでもなるでしょ

360 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 11:18:30 ID:yUsAr7Ai.net]
>>341
>sin(x)=0の最小の正の解とかでええやろ

それ、sin(x)をどうやって定義してる?

>>342
>3よりちょっと大きいってことはやったろ

それは小学校の話かな?
実測しても3より大きいくらいは分かるから
小学校レベルではそれでもいいよな

>そのときに多角形をどうのこうのって話もあったような気がするけどなあ

そうだっけ?



361 名前:132人目の素数さん mailto:sage [2020/05/14(木) 11:28:42.52 ID:yUsAr7Ai.net]
>>343
>結果だけ認めれば

うーん、高校数学のレベルで自己完結できる
っていうのは重要じゃないですかね?

362 名前:132人目の素数さん mailto:sage [2020/05/14(木) 11:43:45.70 ID:44IPwDRu.net]
>>345
厳密に言えば、数学Vとかほとんど意味ないけどね
極限、連続性、微分、積分、無限級数とか、どれも全然厳密じゃない

区分求積法による計算は「数学V」の中ではOKとも言えるし、
厳密じゃないからNGとも言える

363 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 12:11:59 ID:yUsAr7Ai.net]
>>346
厳密性の話はおいとく
高校までの数学は実用本位だから

そうだとしても、円周率くらい
ちゃんと計算できますよって
オチくらいつけたほうが
いいんじゃないかっていうだけで

「要らないよ どうせみんな自分で計算したりしないし」
というなら結構ですが

ちなみに私は退屈しのぎに円周率の数値計算とかしますけど
なんか落ち着くんですよw

364 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 12:36:31 ID:44IPwDRu.net]
>>347
厳密じゃなくてもいいのなら、例えば
∫[0,1] dx / (x^2 + 1) = π / 4
は高校数学の範囲内で「証明」できるから、区分求積法でいくらでも計算できるでしょ
こういう積分って例題にあるんじゃないの?

365 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 14:03:12 ID:yUsAr7Ai.net]
>>348
なるほど
それだと区分求積でも平方根使わなくていいねぇ

366 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 14:17:27 ID:44IPwDRu.net]
>>349
arctan(1) を定積分として表現しただけだけどね
収束は遅い

367 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 16:08:47 ID:2iQrnbhX.net]
オチを付けたほうがいいって話なら中学まででやらなきゃダメじゃないの?
義務教育は中学までなんだから
とりあえず発展学習的に多角形で挟むのは中学でやってるようだぞ

368 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 16:20:42 ID:yUsAr7Ai.net]
>>351
そう来たか

中学レベルで円周率求めろって言われたらどうやる?

369 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 16:43:54 ID:44IPwDRu.net]
中学数学だと数列という概念がないから面倒そう
f(n) とか、こういう表記もないんじゃなかったっけ?
昔のことだからもう覚えていないけど

370 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 17:01:54 ID:zc5pFGyk.net]
内接正n角形の周長と、外接正n角形の周長から、内接正2n角形の周長と、外接正2n角形の周長を求められます。
一般的には、半角の公式を用いて示すのですが、三角形の相似を利用して、関係を示すこともできます。
これなら、中学レベルです。ただし、平方根を用いるので、簡単に計算できるというわけではありません。



371 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 20:07:06 ID:w+h9h8DE.net]
πの近似値
n=6
 辺長1
 3.0

n=8
 (1, 0)-(1/√2, 1/√2)-(0, 1)の距離
 √(2-√2)= 0.765366864
 4√(2-√2)= 3.061467459

n=12
 (1, 0)-((√3)/2, 1/2)-(1/2,(√3)/2)-(0, 1)の距離
 (√3 -1)/√2 = 0.51763809
 3(√6 - √2)= 3.105828541

n=24
 ((√3)/2, 1/2)-(1/√2, 1/√2)-(1/2, (√3)/2)の距離
 √{2 -(1+√3)/√2}= 0.261052384
 12√{2 -(1+√3)/√2}= 3.132628613

372 名前:132人目の素数さん mailto:sage [2020/05/14(Thu) 20:37:53 ID:2iQrnbhX.net]
中学生で3.14まで求めるのは難しいだろうな
もちろん出来る子はいるだろうけど
中学校の間は例えばこうこうこういうことをすればだんだん正確な値が求まるってことを教えりゃいいんじゃね?

373 名前:132人目の素数さん mailto:sage [2020/05/15(金) 02:44:05.39 ID:jFGVDVfH.net]
p(n)= n・sin(π/n),
より
p(2n)= 2n・sin(π/2n

374 名前:)
 = p(n)/cos(π/2n)
 = p(n) √{2/[1 + cos(π/n)]}   (← cosの半角公式)
 = p(n) √{2/[1 + √{1 - (p(n)/n)^2}]},
[]
[ここ壊れてます]

375 名前:132人目の素数さん mailto:sage [2020/05/15(金) 07:39:41 ID:esJX7SLb.net]
オッサン共の雑談かよ

376 名前:132人目の素数さん [2020/05/15(金) 08:34:45.05 ID:AD2Nha1J.net]
一般角とは
1.向きや周回も考えた角の図りかた
2.周回分を全部表せるようにnを使った表しかた
のどっちの意味でつか?
ネットでも教師でも混乱しているようでつが

377 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:30:34 ID:cc6m6J3A.net]
1じゃないの?

378 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:35:20 ID:jfuP69Kn.net]
>>359
オレも1に1票。
でも2の意味にとる1人みいるしそれも間違いとは言いがたい。
教科書ではどっちに読めても不思議ない。
でも多分1

379 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:46:24 ID:NJbmlT1c.net]
両方とも正しいじゃん

380 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:46:36 ID:jFGVDVfH.net]
>>344
sin(x) は
線形微分方程式
f "(x) = - f(x),
f(0) = 0,
f '(0) = 1,
の解だよ。



381 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:47:21 ID:cc6m6J3A.net]
2は何か勘違いをしているんじゃないだろうか
例えばsinθ=1/2を満たすθを一般角も含めて求めるとnを用いて表すアレになるというだけであって、アレが一般角ということではないだろう

382 名前:132人目の素数さん mailto:sage [2020/05/15(金) 12:50:14 ID:1GIDmLdq.net]
1と2の違いがわからないんですけど

383 名前:132人目の素数さん [2020/05/15(金) 14:45:15.64 ID:bHq4/mbm.net]
30度の一般角は30+360n度ってことだよ言わせんなよ恥ずかしい

384 名前:132人目の素数さん mailto:sage [2020/05/15(金) 15:30:58.45 ID:VvHJNaUG.net]
>>359
1だな。
2は「『ある動径に対応する一般角全体』を表すときに整数nを用いて表すことになる。」ことを
あたかも一般角という言葉の意味そのものとして用いているのだろう。誤解を招かない文脈であればそのような言い回しもあるだろう。
+540°や-120°などという角度もそれぞれ単体で立派な一般角である。

>>366
より正確に表現すると「30°に対応する動径の表す一般角全体は30°+360°×nと表される」

385 名前:132人目の素数さん mailto:sage [2020/05/15(金) 15:48:57 ID:3dOo0xKH.net]
弧度法使えよ

386 名前:132人目の素数さん mailto:sage [2020/05/15(金) 15:50:48 ID:plKacE2S.net]
ドドドド度数法wwww

387 名前:132人目の素数さん mailto:sage [2020/05/15(金) 16:28:24 ID:ab/3xZyZ.net]
数学者はいつも弧度法を使うのかな
孤高の数学者がある若手の講演を聞いて

キミの考えはπ違う!

と叫んだとか

388 名前:132人目の素数さん mailto:sage [2020/05/15(金) 16:42:46 ID:ofoiXtbS.net]
>>370
俺の場合スピノールで議論してるので360度違うとちょうど立ち位置が裏表ひっくり返ってる。

389 名前:132人目の素数さん mailto:sage [2020/05/15(金) 16:54:39 ID:jdlcrAvU.net]
リーマン面で考えたら360度×nずれたら全部違う位置なのだが

390 名前:132人目の素数さん mailto:sage [2020/05/15(金) 18:05:48.43 ID:PSbyip56.net]
要は“角の大きさ”の空間が何かという話

@R → AR/2πZ → BR/2πZ,±1×

の3つが考えられてBが通常の“角の大きさ”のなす空間。
A(1,1)→O(0,0)→B(1,0)という折れ線のなす角の大きさを
π/4(とか-15π/4とか)と考えるのが@。
π/4+2nπと考えるのがA。
おそらく高校の教科書ではどちらにも読めない事はないのは、どちらも大切で便利で場合によっては@でもAでも使って(わざと?)グレーにしているのかも。
しかしどちらか一方選べと言われたら@。
@だと考えるとめんどくさいのは先の例では“∠AOBの大きさ”は一意には決まらないので一々「ただし角の大きさは[0,2π)に値をとるとする」のようなエクスキューズをつけないといけないところ。



391 名前:132人目の素数さん mailto:sage [2020/05/15(金) 19:17:25.24 ID:1GIDmLdq.net]
>>373
Aはむしろ同値類で考えないといけないのではないですか?

>>373
>π/4+2nπと考えるのがA。

だとむしろ一つの商空間の元に対応する代表現全体を意味しているように見えるのですけど

392 名前:132人目の素数さん mailto:sage [2020/05/15(金) 20:51:03.70 ID:PSbyip56.net]
>>374
そうそう

問題
A(3,1)B((1,2)の時∠AOBをOAから測った一般角で答えよ。

答え
π/4+2nπ (nは整数)‥✳︎

と答えさせるのは角のなす空間をR/2πZと考えてる問題で“一般角”という語をR/2πZの元を表す言葉として捉えてる。
もし>>373の@の意味なら正解は‥-7π/4,π/4,9π/4,‥のどれを答えても良い多解問題になるけど、答えは✳︎の形で答えさせるのでAと捉えてるのでしょう。
Aと考える事で“多解性”を排除してる。
単に多解性を排除するだけなら「ただし答えは[0,2π)の範囲で答えよ」でも良いはず。
それをわざわざ✳︎の形を使わせる事でR/2πZの“感覚”を養わせてるんでしょう。
その意味でR/2πZとみる事にも一定の意味があるので教科書は(わざと?)曖昧になってる。

393 名前:132人目の素数さん mailto:sage [2020/05/15(金) 20:54:40.87 ID:1GIDmLdq.net]
>>375
>と答えさせるのは角のなす空間をR/2πZと考えてる問題で“一般角”という語をR/2πZの元を表す言葉として捉えてる。


なら、答えはπ/4+2πnとは書かないですよ

あなた、R/2πZがなんなのかわかってないですよね

394 名前:132人目の素数さん mailto:sage [2020/05/15(金) 20:55:15.77 ID:ddEyPcrH.net]
>BR/2πZ,±1×
てどういう意味で書いとるんや?
>Bが通常の“角の大きさ”のなす空間。
ではよう分からん

395 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:07:13.32 ID:ddEyPcrH.net]
>>359
そもそも角と角度(角の大きさ)自体厳密に区別して使わないからどっちでもよくない?

396 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:08:12.53 ID:PSbyip56.net]
>>377
計測する向きを無視するための/×±1
例えばR/2πZの元として3π/4+2πZと5π/4+2πZは同じ類だけどR/2πZに自然に{×±1}を作用させた時の商空間の元としては同じ類に入る。
その商空間が通常の意味の“角の大きさ”

397 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:15:25 ID:1GIDmLdq.net]
>>379
あんまり背伸びしないほうがいいですよ
意味不明なだけですから


あなたの言ってるのは、角度は0〜πまでしかないですよーってことですよ
一周すら表せませんよね、そんなことしたら

398 名前:132人目の素数さん [2020/05/15(金) 21:17:24 ID:QcnLwoPJ.net]
√2の少数位の値も不規則なのに素数ほど注目されないのは何故ですか?
てか√2の少数の値を乱数に使う事って可能?
例えば
1.41421356237だとして三桁ずつ抽出して
141
414
142
421
213
135
は乱数???

399 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:18:06 ID:1GIDmLdq.net]
乱数の定義を述べてくださいね

400 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:38:13 ID:PSbyip56.net]
>>380
そうですよ。
岩波数学辞典による“角”の定義は“端点を共有する二つの半直線の和集合のなす図形”(正確な文言はおぼえてないけど)
当然“角の大きさ”は0〜πしかない。
劣等感?



401 名前:132人目の素数さん [2020/05/15(金) 21:39:01 ID:QcnLwoPJ.net]
>>382
予想できない数値
例えば高性能コンピュータが
141
414
142
421
213
135
を√2の1ズレって予想できる?
予想できないなら乱数だし暗号に使えるだろう

402 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:44:33 ID:1GIDmLdq.net]
>>383
当然、がどう繋がるのか全く意味不明なんですけど?

角の大きさの定義が書かれてませんね

403 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:45:10 ID:1GIDmLdq.net]
>>384
予想できる、できないをもう少し数学的にお願いしますね

404 名前:132人目の素数さん mailto:sage [2020/05/15(金) 21:57:32 ID:ddEyPcrH.net]
>>379
有向角と無向角を明確に区別して用いることは稀というのは同意できるが
ふつうは角といったら有向角と思っているので、無向をふつうと言われると困る

それとは別に
> ?R/2πZ,±1×
という変な記号でそんな意味と分かれというのはさすがについていけない

405 名前:132人目の素数さん mailto:sage [2020/05/15(金) 22:00:43.76 ID:PSbyip56.net]
もういいや。
バカばっか

406 名前:132人目の素数さん mailto:sage [2020/05/15(金) 22:04:05.22 ID:ddEyPcrH.net]
そういえばブルバキは角の空間上の三角函数と角度(実数)上の三角函数を何か区別して書いてたような記憶があるな
sin_a(x) とか書いてパラメタaはcisにあたる函数(指標?)と関連があったりそんな感じの話

407 名前:132人目の素数さん mailto:sage [2020/05/15(金) 22:57:47 ID:cBRbxQk6.net]
>>384
それで定義になると思ってるのかこのアホは

408 名前:132人目の素数さん mailto:sage [2020/05/15(金) 23:00:03 ID:3dOo0xKH.net]
角度の話なのに内積空間の話が出てないな

409 名前:132人目の素数さん mailto:sage [2020/05/16(土) 00:27:36 ID:Pa1EoHM5.net]
>>357
 >>354に関連して書かれたものだと思いますが、354では、

ある半径の円に外接する正n角形の周長をa、内接する正n角形の周長をbとし、
この円に外接する正2n角形の周長をx、内接正2n角形の周長をyとすると、

1/x = (1/2) (1/a + 1/ b)
y = √(bx)

のような関係があることを背景にコメントしたものです。
三角関数を使えば、簡単に示せますが、
中学の図形問題にできるということも、この式を見れば、納得できると思います。

調和平均、相乗平均を繰り返し求める操作が、円周率に関係してくることを示す式となっています。

410 名前:132人目の素数さん [2020/05/16(土) 01:02:21 ID:XipYSTvR.net]
n使うのは一般角の一般解ちゅうことですね



411 名前:132人目の素数さん mailto:sage [2020/05/16(土) 01:13:19 ID:cMt6pnC5.net]
初歩的な質問で申し訳ないのですが、どう考えればいいか教えてください。
よろしくお願いします。

問 次の各関数を合成関数f(g(x))とみるとき、関数f(u)およびg(x)を求めよ

【わからなかった】
(1) (x+1)/sin2x
(2) (sinx)(cosx)
(3) 1/(sinx + cosx)
(4) sin2x/e^x

【わかった】
(1) sin(log x + 1/x)
(2) cos(sin 5x)
(3) 1/(3x-1)^4

412 名前:132人目の素数さん [2020/05/16(土) 01:33:51.19 ID:/jQ552tS.net]
乱数についての質問に対してイチャモンしか付けれない情けない奴が湧いてるな
どうせ純粋数学で挫折したださい奴なんだろうな
今時数学なんて教材が揃ってるから誰でもやれば成績が上がる時代だよ
もっと難しい分野で研究とかしてさ、そこまでのレベルなら見下せよ?

高校数学みたく単なる暗記レベルの数学でマウント取れるって寒気がするわw

413 名前:132人目の素数さん mailto:sage [2020/05/16(土) 01:34:32.97 ID:hBLBPAjt.net]
>>395
ある無矛盾な公理系τの任意のモデルに対してある論理式φが常に真となるならば、τからφがLKにおいて証明可能となることを示せ、という問題がわかりません

414 名前:132人目の素数さん mailto:sage [2020/05/16(土) 01:44:43.39 ID:DpZp53w0.net]
>>396
ゲーデルの完全性定理より明らか

415 名前:132人目の素数さん [2020/05/16(土) 02:36:59 ID:/jQ552tS.net]
乱数とか高校数学でも通用する話題なのにケチつけるんだなw

さては高校までの数学は出来たというパターンかな?ww
高校数学出来る奴って年々増えてるぜw
世には良い教材が揃ってるんだからなw
難問とされる問題だろうが解説が充実しまくりw
いつまで数学が出来る自慢できるやらwww

で難しい答えものってないような専門書レベルの数学は解けるんかな?^^
数学が得意ならそういう問題にも挑戦して正しい答え見つけられるよね?^^
出来ないの?ww
乱数はちょっと難しいレベルなんだが?w
あれぇww

416 名前:132人目の素数さん mailto:sage [2020/05/16(土) 06:18:16 ID:0MAeVS5F.net]
突然発狂してどうしたんだこいつ
病気か?

417 名前:132人目の素数さん mailto:sage [2020/05/16(土) 09:14:42 ID:DetYaJYj.net]
>>396
>>397
高校数学の範囲外、失せろ自己満足厨

418 名前:132人目の素数さん mailto:sage [2020/05/16(土) 09:40:08 ID:L5pUlEPX.net]
劣等感なんじゃないの?

419 名前:132人目の素数さん mailto:sage [2020/05/16(土) 10:23:53 ID:r2A4ZBtC.net]
>>392
> 中学の図形問題にできるということも、
それでは・・・・
単位円周上に点C (1,0)と点D をとる。
Cでの接線Lを曳く。  x=1
ODの延長とLの交点をE,
CDの中点をF,
OFの延長とLの交点をG,
DおよびFからx軸OCに下した垂線を DH、FH' とおく。
?OFH' ∽ ?OCF ∽ ?OGC
 CE/2 = a'
 FH' = DH/2 = b'
 CG = x'
 CF = DF = y'
とおこう。
?OFH' ∽ ?OCF ∽ ?OGC より
 y' = √(b'x'),
OC=1 と三平方の定理も使うと
 1/b' = 1/x' + x',
また ?OEC ∽ ?ODH より
 (a'/b')^2 = 1 +(2a')^2,
 (1/b')^2 -(1/a')^2 = 4,
これらより
 1/a' = 1/x' - x',
よって
 1/x' =(1/2)(1/a' + 1/b'),

CDを正2n角形の一辺とするとき >>392 との対応は
 a = 4na' b = 4nb' x = 4nx' y = 4ny'

420 名前:132人目の素数さん [2020/05/16(土) 10:25:53 ID:oii8q1/C.net]
>>394
fが一変数だと難しいから、掛け算とか割り算の二変数なんじゃね



421 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/16(土) 10:29:47 ID:m9DOwtPL.net]
前>>331
>>384次に来る数は356と予想される。

422 名前:132人目の素数さん mailto:sage [2020/05/16(土) 10:53:09 ID:6HUKkQmX.net]
恒等写像との合成を考えちゃえばいいよね
というか、わからない方の(3)はわかった方の(3)と同様にできるでしょ

423 名前:132人目の素数さん mailto:sage [2020/05/16(土) 11:11:48 ID:r2A4ZBtC.net]
>>394
たとえば・・・・
(2)
 f(u)=(1/2)sin(u), g(x)= 2x,
(3)
 f(u)= 1/{(√2)sin(u)}, g(x)= x + π/4,
でどう?

424 名前:394 mailto:sage [2020/05/16(土) 11:36:10 ID:cMt6pnC5.net]
みなさん、ありがとうございます。

>>403さん
2変数関数で考えるというのは、
f(u)において、u=h(a,b)ってことでしょうか?

>>405さん
恒等写像の合成、調べてみました。
与式をA→B→Cに分解してA→B、B→Cの関数g(x)、f(u)を求めるということなんですね。
こういう考えがなかったので、貴重なヒントになりそうです。
ありがとうございます!

そしてわからなかったほうの(3)は確かにわかったほうの(3)と同じように
f(u)=u^(-1)
とすればよさそうですね。
sinxとcosxに頭を支配されていました。
ありがとうございました。

>>406さん
ありがとうございます。
f(g(x))を計算してみておおお!と叫びました。
このf(u)とg(x)を導くにはどういう思考プロセスが必要なのでしょうか?
f(g(x))が与式に等しいことは計算できても、逆ができる気がしません。。。

425 名前:132人目の素数さん [2020/05/16(土) 12:41:21 ID:oii8q1/C.net]
その問題見てふと思ったけど関数の合成に関する素因数分解とかってあるのかな

426 名前:132人目の素数さん mailto:sage [2020/05/16(土) 12:57:52 ID:VN/D3za9.net]
>>408
可換じゃないから難しいかも
一応、変換モノイドという概念はあるけど

427 名前:132人目の素数さん mailto:sage [2020/05/16(土) 14:16:40.17 ID:tSyPQjnv.net]
何が素か分からん

428 名前:132人目の素数さん mailto:sage [2020/05/16(土) 15:56:09 ID:E46C+UYT.net]
>>388
テメェ勝手な言葉使っといて分かれ分かれ言っといてバカばっかじゃ有っかこな
人に伝わる書き方できる様になってから出直して来いアホンダラ

429 名前:132人目の素数さん mailto:sage [2020/05/16(土) 16:50:09 ID:r2A4ZBtC.net]
ついでに言うと、
将棋語辞典によれば「角行」と云って、斜め45°方向に動けるらしい。
また、敵陣に入ると「坂本龍馬」に成れるらしい。

430 名前:132人目の素数さん mailto:sage [2020/05/17(日) 09:50:51 ID:jv4DNZp5.net]
隣の都成竜馬

奨励会三段のとき一般棋戦(新人王戦44)優勝



431 名前:132人目の素数さん [2020/05/17(日) 20:45:30 ID:J5QJDGxC.net]
抽選箱AとBの中にそれぞれ「当たり」と「はずれ」のくじが入っている。
Aには当たりが3枚、はずれが2枚入っており、Bには当たりが1枚、はずれが2枚入っている。
今、ABいずれかの抽選箱の中からくじを1枚だけ引く。ABどちらの抽選箱を選ぶ

432 名前:かは
自由であるが、どちらの抽選箱を選んだかどうかは引いた人からは見えない構造になっている。
くじを引いて当たりだった場合、Aの抽選箱からくじを引いた確率はいくらか。
[]
[ここ壊れてます]

433 名前:132人目の素数さん mailto:sage [2020/05/17(日) 20:49:53 ID:0mRqlP0L.net]
9/14

434 名前:132人目の素数さん [2020/05/17(日) 20:52:52 ID:yI1GuczA.net]
こういう脚色系問題キモい

435 名前:イナ mailto:sage [2020/05/17(日) 21:36:41.75 ID:eAjpSmlv.net]
>>404
>>414Aの箱から当たりを引く確率は3/5=0.6
Bの箱から当たりを引く確率は1/3=0.333…
くじを引く人がじゅうぶん聡明かつ人生に夢を持っているならば限りなく3/5の確率でAの箱から当たりを引く。
が、あくまで勝負は運だ、どっちの箱から当たりを引くか自分で決められない輩もいるだろう。その場合確率は少し下がるがAの箱から当たりを引く確率3/5と、Bの箱から当たりを引く確率1/3を足して14/15
このうちAの箱から当たりを引く確率は、
(3/5)/(14/15)=9/14
頭がいいと3/5 (6割当てる)
頭がわるいと9/14(6割4分2厘8毛 意外と当てる)
意味わからん。

436 名前:132人目の素数さん mailto:sage [2020/05/17(日) 21:46:31 ID:n24L2nAW.net]
イナとかいう偏差値50切ってるアホでも6割当たるってことね

437 名前:132人目の素数さん mailto:sage [2020/05/17(日) 21:52:40 ID:y3hI356+.net]
イナに構うやつも荒らし

438 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/17(日) 21:58:40 ID:eAjpSmlv.net]
前>>417
>>418偏差値関係ない。問題難しくなったり困難な局面に置かれたりして数学のウェイトが大きくなると数学好きな奴は捨ててた確率でも本能的に解く。

439 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/17(日) 21:58:40 ID:eAjpSmlv.net]
前>>417
>>418偏差値関係ない。問題難しくなったり困難な局面に置かれたりして数学のウェイトが大きくなると数学好きな奴は捨ててた確率でも本能的に解く。

440 名前:粋蕎 ◆C2UdlLHDRI mailto:sage [2020/05/17(日) 22:31:57 ID:LIJrZTQ0.net]
本能的に解くとか言うのは数式で自由に描像なってから言える事



441 名前:粋蕎 ◆C2UdlLHDRI mailto:sage [2020/05/17(日) 22:36:52 ID:LIJrZTQ0.net]
本能的に解くとか言うのは数式で自由に描像できる様なってから言える事

442 名前:132人目の素数さん mailto:sage [2020/05/17(日) 23:30:40 ID:R6A/tgDN.net]
うっせーぞカス

443 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/18(月) 21:58:49 ID:6WKAObpy.net]
前>>420-421なんか面白い問題ないの?
自由に猫像🦅🐷🐱❣🤤🙎♂🕺.❓.¿

444 名前:132人目の素数さん mailto:sage [2020/05/18(月) 22:15:53 ID:NR7+irFR.net]
>>425
なんで自分自身にレスしてんだよ
だからお前は人生の敗者なんだぞ

445 名前:132人目の素数さん [2020/05/18(月) 22:27:48 ID:PpdCPlSu.net]
さすがイナさん!

446 名前:132人目の素数さん mailto:sage [2020/05/19(火) 22:17:01.60 ID:szLWlfVB.net]
>>425
イナさんは工場で働いていたそうですが、時給はいくらでした?

447 名前:132人目の素数さん [2020/05/20(水) 13:04:38 ID:tPy927lV.net]
https:/twitter.com/Mah_Mah_jong
https:/twitter.com/mosakura1996

https://ja.wikipedia.org/wiki/%E4%BD%90%E8%97%A4%E9%9B%84%E4%BA%8C

https:/twitter.com/FX09270281

https:/twitter.com/Rey02225007

https://twitter.com/Toshi13574698

https:/twitter.com/midnightthemore

反中民族乞食トルコ風呂ゴキブリエルまずニホンザルヒトモドキを刺し殺せ
(deleted an unsolicited ad)

448 名前:イナ mailto:sage [2020/05/20(水) 14:29:43.19 ID:tAhN69jq.net]
>>425
近年の時給<1,000<工場の時給
<に=を重ねた記号はどうやったらでますか?
アップル社に電話してそれだけ訊くのもなんか時間かかるし困る。

449 名前:132人目の素数さん mailto:sage [2020/05/20(水) 15:18:56.96 ID:fbQidY12.net]
>>430


しょうなりいこーる。

450 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/20(水) 16:53:17 ID:tAhN69jq.net]
前>>430
>>431ガラケーのときは、小なりイコールとか小なりでもすぐ出たんだよ。アップル社に訊いた。有料



451 名前:アプリを勧められた。絶対それはおかしい。記号で≦は出る。表示が小さいのはアップル社が言うには有料アプリで大きくしなきゃいけないんだと。 []
[ここ壊れてます]

452 名前:132人目の素数さん mailto:sage [2020/05/20(水) 17:03:48.62 ID:N5dEyDd3.net]
物臭せずに記号覧を呼び出して選び取れ将人先輩

453 名前:132人目の素数さん mailto:sage [2020/05/20(水) 17:55:15 ID:535Kto+L.net]
初歩的でごめん。虚数を疑ってるわけでないんだが、この間違った計算ってなんでこう間違ってるのか教えて欲しい

x=iと置く

i=(-1)^1/2より
x=(-1)^1/2と置く

両辺を2倍し
x^2=-1にする

移行する
x^2+1=0

-b^2±√4ac/2aにより
x=±1

i=±1…?

虚数が消える…?

454 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:08:20 ID:rkCXtjJm.net]
公式間違ってますよ

455 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:28:04 ID:535Kto+L.net]
>>435
脳内補完して欲しい
i=±1になるなんてことありえないよね?展開何か間違ってるはずなんだけどどこかわからない

456 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:33:25 ID:535Kto+L.net]
-b±√b^2−4ac/2aか
ごめん公式間違ってたのか
i=i
問題なかった

457 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:33:56 ID:zzlqVCk7.net]
>>436
>>435

458 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:37:45 ID:zzlqVCk7.net]
>>438
タイミングが悪かった

459 名前:132人目の素数さん mailto:sage [2020/05/20(水) 18:41:44.97 ID:19D6aOKr.net]
なんで池沼が虚数の勉強してるの?

460 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/20(水) 18:58:21 ID:tAhN69jq.net]
前>>432
>>433だから、「きごう」って打てば出るってことじゃん、≦も<も。大きくするにはアプリが要るって情報、今いらないじゃん。しかも有料で、数学板の答案を書くためだけに。ちゃんとアンケートに答えといたよ。



461 名前:132人目の素数さん [2020/05/21(Thu) 00:04:10 ID:sZ7Wz5TO.net]
>>437
酷い酷すぎ酷MAX

462 名前:132人目の素数さん mailto:sage [2020/05/21(Thu) 09:23:24 ID:ekyW0v7d.net]
これもコロナの影響か

463 名前:132人目の素数さん [2020/05/21(Thu) 20:01:08 ID:PTmra9ZL.net]
>>440
虚数って単に座標軸変換しただけじゃん^^
大学数学に挫折した馬鹿でも理解できる
てかただのルールだし^^

464 名前:132人目の素数さん [2020/05/21(木) 20:46:41.31 ID:9RiubnPi.net]
グラム・シュミットの正規直交化法ってなんのためにやってんだかよくわからないと
いうか、直交基底っていくらでも作れるわけじゃないですか?
で、元のベクトルが線形独立なら線形変換でも基底変換でもできるわけだしなんで
正規直交化法って必要なんですか?

465 名前:132人目の素数さん [2020/05/21(木) 20:48:13.26 ID:8DDZoM5V.net]
立方体を展開するには12本の辺のうち7本を切り開くことになりますが
どんな7本を選んでもいいというわけではないです
12本の辺から無策に7本を選んで切り開くとき、展開図ができる確率はいくらですか

466 名前:132人目の素数さん mailto:sage [2020/05/21(木) 20:48:15.96 ID:kgvBGmPf.net]
>>444
低能は黙ってろ
どうせ背伸びしただけの馬鹿ガキだろ

467 名前:132人目の素数さん [2020/05/21(Thu) 21:02:00 ID:SF5G2a64.net]
>>445
直行基底の具体的な作り方を示してるから重要

直行基底がいくらでもあるのは事実だけれど、そこから具体的に一つ作るのはまた別の難しさがある
その作り方を具体的なアルゴリズムで示してる点でグラムシュミットは重要

468 名前:132人目の素数さん mailto:sage [2020/05/21(Thu) 21:36:15 ID:KA7tMHD/.net]
>>445
>直交基底っていくらでも作れるわけじゃないですか?

本当?
確かにグラム・シュミットの正規直交化法は任意の基底から正規直交基底を作る1つの方法にすぎないから、
他の方法で作れるならそれでもいいかもね
なぜ必要かという質問は難しいけど、正規直交基底が作れれば、
例えばベクトルの成分表示が簡単に求められる
【例】
実数体 R 上の n 次の内積空間 V の正規直交基底を {e_1, … , e_n} とするとき、
V の任意のベクトル a に対し、 <・, ・> を V の内積とすると、
a = a_1 e_1 + … + a_n e_n
= <a, e_1> e_1 + … + <a, e_n> e_n
と表せる。また、 b = b_1 e_1 + … + b_n e_n のとき、
<a, b> = a_1 b_1 + … + a_n b_n が成り立つ。特に、 a のノルムについて、
||a||^2 = <a, a> = a_1^2 + … + a_n^2 が成り立つ。

469 名前:132人目の素数さん [2020/05/21(Thu) 21:50:27 ID:+dbdqdus.net]
パソコンに不慣れなのでおえかきにしました
eのx−2乗かけるeのx2乗を2回微分したものを求めよということです
xの2乗をu置き換えるとこまではわかりました
sssp://o.5ch.net/1nuqm.png

470 名前:132人目の素数さん [2020/05/21(Thu) 21:58:20 ID:PTmra9ZL.net]
>>447
てめーのほうが無能だろww
虚数って電気で使うじゃんwww
ただのルールなのにドヤ顔とかだっさ^^
小学生でも理解できるよw



471 名前:132人目の素数さん mailto:sage [2020/05/21(Thu) 22:10:28 ID:kgvBGmPf.net]
>>451
小学生はだまっとけ
ちんこのカスのにおいでもかいでろ
電気でも使うとか猿でも知ってる
おまえが最近しったことをどや顔で語るなよチンパン

472 名前:132人目の素数さん mailto:sage [2020/05/21(Thu) 22:24:31 ID:9RiubnPi.net]
>>448
>>449
ありがとうございます。
その辺り無数にある直交基底の一つを作るアルゴリズムみたいなもの、みたいな説明がしてあれば
わかりやすいと思うのですが、読んだ本、Youtubeの筑波大学の講義映像なんか、WEBの説明
読んだりしたけどはっきり書いてあるのがないんですよね。
最初はあるベクトルの組み合わせから一意にしか直交基底って作れないのかな、とそのレベル
で悩んだり

なんか線形代数って個々の説明とかは理解しやすい気がするけど、いつの間にか全体で何やって
いるのかわからなかったり、学習曲線が急に上がったりする感じで‥

473 名前:132人目の素数さん [2020/05/21(木) 22:38:38.85 ID:PTmra9ZL.net]
>>452
ただのルールを数学とかいっちゃうのは恥ずかしすぎ

474 名前:132人目の素数さん [2020/05/21(木) 22:42:43.92 ID:PTmra9ZL.net]
>>452
数学が難しい時代なんて終わったんだよ^^
恥ずかしくねーのか^^

475 名前:132人目の素数さん mailto:sage [2020/05/21(木) 22:48:57.46 ID:yrtUewGg.net]
> 数学が難しい時代なんて終わったんだよ^^

じゃあ今すぐabc予想を証明して見せてくれ、IUT利用禁止

476 名前:132人目の素数さん mailto:sage [2020/05/21(Thu) 23:01:39 ID:kgvBGmPf.net]
>>454>>455
キチガイは黙っとけ
バカなんだから一生高校数学やっとけ

477 名前:イナ mailto:sage [2020/05/22(金) 02:49:09.41 ID:9CKBOLIK.net]
>>441
>>446
ちょい自信ないけど、
展開図描いたときに、
辺の切り方はコンビネーションの12から7選んだ12!/(7!・5!)=792
これが分母で、
このうち立方体ができるんは、
7つの切れ目のうちの1つをくっつけるかわりに、
どこかしらを切らないかんなる。
いくつあるんか。
2+2+2+2+3+3+3=17
求める確率は17/792=0.021452……

478 名前:イナ mailto:sage [2020/05/22(金) 03:03:52.80 ID:9CKBOLIK.net]
>>458この7倍切る辺があるとすると、
>>446
15.0252525……%

479 名前:132人目の素数さん mailto:sage [2020/05/22(金) 04:42:02 ID:y+ggBWMl.net]
>>450
 f(x) = exp(g(x)),
ならば
f '(x) = g '(x)f(x),
f ''(x) = g ''(x)f(x) + g '(x)f '(x)
 ={g ''(x) + [g '(x)]^2}f(x),
これに
 g(x) = 1/xx + xx,
 g '(x) = -2/x^3 + 2x,
 g ''(x) = 6/x^4 + 2,
を入れる。

480 名前:132人目の素数さん mailto:sage [2020/05/22(金) 13:20:44.41 ID:+SGF6XHP.net]
>>445
成分表示のベクトルしか頭にない



481 名前:人が陥る考えだな
定義だけから展開する本当の数学を身に付けた方がいいね
[]
[ここ壊れてます]

482 名前:132人目の素数さん mailto:sage [2020/05/22(金) 19:13:46 ID:XzImmTgf.net]
なら高校生向けにその本物の数学がわかるとやらの線形代数の本の一冊でも紹介しろチンカス

483 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/22(金) 20:05:48 ID:9CKBOLIK.net]
前>>459訂正。
>>446
すべての場合の数は12C7=(12・11・10・9・8)/(5・4・3・2)
=792
その場合の数は4C3・(3・3+2)=44
描いた展開図が立方体になる確率は、
44/792=1/18
=0.05555.….…
∴5.555..…%

484 名前:132人目の素数さん mailto:sage [2020/05/22(金) 20:11:19 ID:DWioWMx0.net]
お願いします。

男子7人、女子5人のグループの中で、5人の係を選ぶとき、係の中に男子が2人以上入る選び方は何通りあるか。

485 名前:132人目の素数さん mailto:sage [2020/05/22(金) 20:46:37.23 ID:3WJPVX/3.net]
12C5-5C5-7C1*5C4=756

486 名前:132人目の素数さん mailto:sage [2020/05/22(金) 21:04:25.50 ID:B8eK5tyH.net]
>>463
その場合の数は

ダウト

487 名前:132人目の素数さん mailto:sage [2020/05/22(金) 21:47:15.09 ID:FLuyRaI5.net]
>>446
なかなか正解でないね

展開図として切り開くのに失敗する場合
2つの隣り合う面が別々に切り取られる:12
2つの隣り合う面がつながって切り取られる:60
1つの面だけが全体から切り離される:312

(792−12−60−312)/792
=408/792=17/33
=51.51...%

488 名前:132人目の素数さん mailto:sage [2020/05/22(金) 21:52:59.86 ID:FLuyRaI5.net]
>>467
3枚と3枚に分割される:24
が抜けてた

(792−12−60−312−24)/792
=384/792=16/33
=48.48…%

489 名前:132人目の素数さん mailto:sage [2020/05/22(金) 22:08:14.58 ID:OHkVWecd.net]
ちなみに 立方体 展開図 でググると分子の場合の数は一撃でわかる。
だから答えはすぐわかる。

490 名前:132人目の素数さん mailto:sage [2020/05/22(金) 22:27:39.78 ID:Y8oEukR8.net]
>>446
https://uni.5ch.net/test/read.cgi/math/1324996039/433-



491 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/22(金) 23:04:01 ID:9CKBOLIK.net]
前>>463
3枚、3枚に分割した展開図なんかアウトだろうが。
どこの世界で切れてる展開図を展開図として認めてんだ?
5.555……%は低い気はするけどさ。
重ねるの以上に切りすぎダウトだぜ。

492 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/22(金) 23:04:22 ID:9CKBOLIK.net]
前>>463
3枚、3枚に分割した展開図なんかアウトだろうが。
どこの世界で切れてる展開図を展開図として認めてんだ?
5.555……%は低い気はするけどさ。
重ねるの以上に切りすぎダウトだぜ。

493 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/22(金) 23:10:12 ID:9CKBOLIK.net]
前>>472
ああ、引いてんのね。
思いつくのちょっと引いてそれ以外展開図オッケーなら多くなると思う。

494 名前:132人目の素数さん mailto:sage [2020/05/23(土) 00:05:58 ID:jl5/nK5k.net]
┏┓
┣┫
┣╋┓
┗╋┫
 ┣┫
 ┗┛
12
 ┏┓
┏╋╋┓
┗╋╋┛
 ┣┫
 ┗┛
24
‥‥

495 名前: 【凶】 mailto:sage [2020/05/23(土) 00:23:10 ID:fsLFaWim.net]
高校生のためのスレ321
の528だったかな、16/33みたい。
もれなく数えたはるっぽい。

496 名前:132人目の素数さん mailto:sage [2020/05/23(土) 06:10:41 ID:PosjuMbp.net]
円の接線の公式を使わずに、接点が判明していない場合の接線は求められますか?

497 名前:132人目の素数さん mailto:sage [2020/05/23(土) 07:22:58 ID:BQeZJZ0n.net]
>>476
円と直線の方程式を連立して重解を持つとか
点と直線の距離の公式を使って
円の中心と直線との距離=半径
で計算するとか
教科書にも載ってるだろ

498 名前:132人目の素数さん mailto:sage [2020/05/23(土) 07:24:52 ID:AtHnH0VF.net]
>>476
通る点を(a,b)とすると接線はy=m(x-a)+b
あとは判別式または点と直線の距離でmをだす

499 名前:132人目の素数さん mailto:sage [2020/05/23(土) 08:23:43 ID:ADQsDm88.net]
>>465
ありがとうございます。

500 名前:132人目の素数さん mailto:sage [2020/05/23(土) 09:03:45.85 ID:AtHnH0VF.net]
>>479
どういたしまして。



501 名前:132人目の素数さん [2020/05/23(土) 12:04:34.21 ID:ANEckp0b.net]
θが鋭角の時sinθが最大とtanθが最大は同値ですよね?

502 名前:132人目の素数さん mailto:sage [2020/05/23(土) 14:19:59 ID:99Y2apGI.net]
tan の最大値とは

503 名前:132人目の素数さん mailto:sage [2020/05/23(土) 14:27:01 ID:0y0iBj34.net]
どっちも最大値ないんじゃ?

504 名前:132人目の素数さん mailto:sage [2020/05/23(土) 14:55:14.84 ID:XRgK9y56.net]
https://i.imgur.com/gs1ht5u.jpg
どなたかお願いします

505 名前:132人目の素数さん [2020/05/23(土) 14:59:02.93 ID:6rlRJbrS.net]
画像読めない、、!

506 名前:132人目の素数さん mailto:sage [2020/05/23(土) 15:23:03.23 ID:xZALqN0p.net]
>>484
算数じゃん

507 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/23(土) 16:05:56 ID:fsLFaWim.net]
>>481
sinθとtanθが同値だと仮定すると、
sinθ=tanθ=sinθ/cosθ
sinθcosθ=sinθ
sinθ(1-cosθ)=0
θ=0°
∴矛盾
鋭角三角形は存在しない。

508 名前:132人目の素数さん mailto:sage [2020/05/23(土) 16:13:49 ID:7IP8QBSa.net]
果たして直角は鋭角と鈍角のどちらに包含されるのか、それともどちらにも包含されないのか、
はたまた場の雰囲気を読めとばかりに各文章題に応じた順応を求められるのだろうか?

509 名前:132人目の素数さん mailto:sage [2020/05/23(土) 16:17:02 ID:SGVDerAD.net]
>>484
9時21分

510 名前:132人目の素数さん mailto:sage [2020/05/23(土) 16:18:14 ID:SGVDerAD.net]
>>488
教科書に書いてあるからくだらない妄想膨らませる前に教科書読め無能



511 名前:132人目の素数さん mailto:sage [2020/05/23(土) 16:48:41.76 ID:BQeZJZ0n.net]
>>484
追い付くと言うことは、それまでに2人が進んだ距離が同じと言うこと
進んだ距離が同じとき
速さの比=掛かった時間の逆比
これによりAとDの速さの比は 1:3
Dは9時14分に出発してるので、9時X分に追い付くとすると
掛かった時間=速さの逆比より
X:(X-14)=3:1
X=21
よって9時21分

512 名前:132人目の素数さん mailto:sage [2020/05/23(土) 17:10:01.67 ID:7IP8QBSa.net]
>>490
命賭けられる?間違ってたら死んで詫びれる?

513 名前:132人目の素数さん mailto:sage [2020/05/23(土) 17:22:47 ID:SGVDerAD.net]
>>492
今すぐ死ねよクソが

514 名前:132人目の素数さん mailto:sage [2020/05/23(土) 17:28:15 ID:BQeZJZ0n.net]
>>492
教科書会社の啓林館 算数用語集


https://www.shinko-keirin.co.jp/keirinkan/sansu/WebHelp/04/page4_01.html

直角よりも小さい角を鋭角といい,直角より大きく平角より小さい角を鈍角といいます。

515 名前:132人目の素数さん mailto:sage [2020/05/23(土) 17:37:08 ID:X/GVmCC1.net]
>>484
【No.18】A〜Dの4人が、同じ地点から出発し、同じ道を通ってX町に出
かけた。今、次のア〜エのことが分かっているとき、DがAに追いついた時刻
はどれか。ただし、4人の進む速さは、それぞれ一定とする。

ア Aは、午前9時に出発した。
イ Bは、Cよりも10分早く出発したが、40分後にCに追いつかれた。
ウ Cは、Aより20分遅れで出発し、10分後にAに追いついた。
エ Dは、Bより4分遅れで出発し、12分後にBに追いついた。

 1 9時21分
 2 9時24分
 3 9時27分
 4 9時30分
 5 9時33分

516 名前:132人目の素数さん mailto:sage [2020/05/23(土) 17:44:46 ID:BQeZJZ0n.net]
>>492
https://kotobank.jp/word/%E9%8B%AD%E8%A7%92-442989


鋭角(えいかく)とは - コトバンク

鋭角(読み)えいかく

大辞林 第三版の解説

直角より小さい角度。 ⇔ 鈍角


精選版 日本国語大辞典の解説

直角よりも小さい角。⇔鈍角。〔工学字彙(1886)〕

デジタル大辞泉の解説

直角より小さい角。⇔鈍角。

世界大百科事典内の鋭角の言及

【角】より

…平角の半分の大きさの角を直角といい,∠Rで表す。直角より小さい角を鋭角,直角より大きく平角より小さい角を鈍角という。



直角が鋭角に含まれるという記述はない
もちろん直角が鈍角に含まれるという記述もない

517 名前:132人目の素数さん mailto:sage [2020/05/23(土) 18:06:58 ID:X/GVmCC1.net]
出発時刻と 9時t分までの移動距離は
 A 9時    A(t)= at,
 B 9時10分  B(t)= b(t-10),
 C 9時20分  C(t)= c(t-20),
 D 9時14分  D(t)= d(t-14),

また、題

518 名前:意より
 B(50)= C(50),  c/b = 4/3,
 A(30)= C(30),  a/c = 1/3,
 B(26)= D(26),  b/d = 3/4,
 
これより
 a/d =(a/c)(c/b)(b/d)=(1/3)(4/3)(3/4)= 1/3,
∴ A(21)= D(21).
[]
[ここ壊れてます]

519 名前:132人目の素数さん mailto:sage [2020/05/23(土) 18:28:54 ID:jsQMH4Xo.net]
>>492
小学生かな?

520 名前:イナ mailto:sage [2020/05/23(土) 19:03:38.82 ID:fsLFaWim.net]
>>487
>>484
題意より出発時刻は、
A9:00
B9:10
C9:20
D9:14
Bが16分で行く道をDは12分で行くからBはDの75%の速さ。
Bが40分で行く道をCは30分で行くからBはCの75%の速さ。
つまりCとDは同じ速さで、Aが30分で行く道を10分で行くからAの3倍の速さ。
9時x分にDがAに追いつくとすると、
3(x-14)=x
2x=42
∴x=21
9:21……答えは1



521 名前:132人目の素数さん mailto:sage [2020/05/23(土) 19:49:26 ID:7IP8QBSa.net]
ほーら、含まれないんじゃん。落とし前付けて貰おうか?

522 名前:132人目の素数さん mailto:sage [2020/05/23(土) 20:40:19 ID:SGVDerAD.net]
>>500
いけぬまさんですか?

523 名前:132人目の素数さん mailto:sage [2020/05/23(土) 20:42:57 ID:7IP8QBSa.net]
ほら、ケジメ取れよ

524 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:08:10 ID:qHrUYt3d.net]
>>502
いつものコテつけとけ

525 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:18:30 ID:7IP8QBSa.net]
どうすんの?なに甘えてんだ?

526 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:19:04 ID:AtHnH0VF.net]
488 名前:132人目の素数さん[sage] 投稿日:2020/05/23(土) 16:13:49.37 ID:7IP8QBSa [1/4]
果たして直角は鋭角と鈍角のどちらに包含されるのか、それともどちらにも包含されないのか、
はたまた場の雰囲気を読めとばかりに各文章題に応じた順応を求められるのだろうか?


バカまるだしwwwwwwwwwwwwww

527 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:25:05 ID:7IP8QBSa.net]
果たして零は正数と負数のどちらに包含されるのか、それともどちらにも包含されないのか、
はたまた場の雰囲気を読めとばかりに各文章題に応じた順応を求められるのだろうか?

528 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:27:43.18 ID:YfF10yV3.net]
↑池沼w

529 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:36:52.85 ID:7IP8QBSa.net]
お?IDを転がし始めたか?御前の脳も転がして全身不随の人に首から下ぁまるごと献体した方がいいな

530 名前:132人目の素数さん [2020/05/23(土) 21:51:36 ID:sshgQJyt.net]
506 名前:132人目の素数さん[sage] 投稿日:2020/05/23(土) 21:25:05.49 ID:7IP8QBSa
果たして零は正数と負数のどちらに包含されるのか、それともどちらにも包含されないのか、
はたまた場の雰囲気を読めとばかりに各文章題に応じた順応を求められるのだろうか?


プププ



531 名前:132人目の素数さん mailto:sage [2020/05/23(土) 21:57:17 ID:7IP8QBSa.net]
落とし前は?ケジメは?ID固定は?
お前みたいな奴が言う事成す事コロコロ代える順応マンになるわけだな

532 名前:132人目の素数さん mailto:sage [2020/05/23(土) 22:20:09 ID:Iy270uYz.net]
こんなやついたっけ?

533 名前:132人目の素数さん [2020/05/23(土) 22:42:29.19 ID:w5VDZjpn.net]
>>510

プ

534 名前:132人目の素数さん mailto:sage [2020/05/23(土) 22:53:00.08 ID:apmzKc2H.net]
赤○の所の計算を詳しく教えて下さい

https://i.imgur.com/0fTaK1s.jpg

535 名前:132人目の素数さん mailto:sage [2020/05/23(土) 23:10:13.65 ID:Iy270uYz.net]
>>513
500^2-460^2
=(500-460)(500-460)
=960*40
=24*40^2
=6*80^2
これのルートは80√6=80√2√≒=80*1.414*1.732≒196

536 名前:132人目の素数さん mailto:sage [2020/05/24(日) 06:15:41 ID:Am09qk4r.net]
>>514
難しいですね。

537 名前:132人目の素数さん mailto:sage [2020/05/24(日) 07:15:12.94 ID:Bw30mnWj.net]
問題に√6≒2.45として良いとか書かれてないの?

538 名前:132人目の素数さん mailto:sage [2020/05/24(日) 07:40:10.88 ID:K0ZugYuF.net]
>>516
見当たらないです。

https://i.imgur.com/y5pHnJf.png

539 名前:132人目の素数さん mailto:sage [2020/05/24(日) 07:54:55 ID:Bw30mnWj.net]
>>517
その中で近い値を選ぶだけなのか
2.5^2=6.25だから√6は2.5よりちょっと小さい
→80√6は200よりちょっと小さい
→380-80√6は180よりちょっと大きい
これくらいで十分なんじゃないか

540 名前:132人目の素数さん mailto:sage [2020/05/24(日) 08:43:35.07 ID:kbQGYQVt.net]
何の問題か分かんないけど
電気に関する問題でしょ
工学系の人間なら√2や√3や√6の近似値は知ってて当然じゃないの?



541 名前:132人目の素数さん [2020/05/24(日) 08:51:11.12 ID:fNaRhsev.net]
>>519
500^2-460^2
=(500-460)(500-460)
=960*40
=24*40^2
=6*80^2
これを難しいといってる池沼だぞ

542 名前:132人目の素数さん [2020/05/24(日) 09:21:49.76 ID:fXVLHTcYP]
中学生に問題を出したいのですが、
公比2分の1の等比の数列って何か思いつくものありますか?
原子力の半減期とか、減数分裂が思いついたので

543 名前:すが、それ以外に何かありますでしょうか。
思いついた方、ぜひ教えてください。
[]
[ここ壊れてます]

544 名前:132人目の素数さん mailto:sage [2020/05/24(日) 09:52:45.94 ID:kbQGYQVt.net]
>>520
> 500^2-460^2
> =(500-460)(500-460)


確かに難しいなwww

545 名前:132人目の素数さん mailto:sage [2020/05/24(日) 09:54:38.75 ID:JSBQT6Py.net]
質問者の池沼だけど
>>522は気づきました
+-にならなきゃダメですよね。

546 名前:132人目の素数さん mailto:sage [2020/05/24(日) 09:57:38.03 ID:ra0ZpDC7.net]
>>513
(b) 変圧器が過負荷運転とならないために設置するコンデンサ
設備の必要最小容量をQcと置くと、(b)図の関係より、
  460^2 +(380-Qc)^2 = 500^2,

∴ Qc = 380 - √(500^2 - 460^2) ≒ 380 - 196 = 184 〔kvar〕

 したがって、(4)200〔kvar〕となる。

547 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:06:52 ID:kbQGYQVt.net]
>>523
あんまり気にするな
横軸(実軸)に有効電力、縦軸(虚軸)に無効電力を取れば直角三角形ができ、斜辺が皮相電力になる
これが分かれば後は三平方の定理を使うだけ
平方根の計算が苦手なら、中学数学の問題で練習すればいい

548 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:11:11 ID:efpF+9SX.net]
>>525
(380-Qc)^2 = 500^2-460^2
ここで平方根をとる?っていうのかな?
そしたら

380-Qc=√( 500^2-460^2 )
になるのですか?
何で左の項には√が付かないのですか?

549 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:15:47 ID:kbQGYQVt.net]
>>526
例えば
x^2=4
ならば
x=±√4=±2

この問題では辺の長さなのでプラスを考えればよい

550 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:19:20 ID:efpF+9SX.net]
>>527
ありがとうございます
これは、「平方根をとる」って言い方でいいのですか?



551 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:22:28 ID:kbQGYQVt.net]
>>528
はい

552 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:22:50 ID:ra0ZpDC7.net]
500^2 - 460^2
=(500+460)(500-460)
= 960・40
= 2400・16
≒ 2401・16
= 7^4・2^4
=(7・2)^4
= 14^4,
これを難しいと言ってる・・・・後ry)

553 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:26:27 ID:efpF+9SX.net]
>>530
それ一番スマートな解き方なのですか
正直めんどく無いですか?

554 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:28:51 ID:efpF+9SX.net]
ちなみに試験は電卓OKです。

555 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:40:47 ID:kbQGYQVt.net]
>>531
普通?は
2400≒2401=7^4
は思いつかない気がする

殆どの人は80√6と変形した後に近似値を計算するハズ

電卓が使えるなら80√6の形にする前に
そのまま入力して計算すればいい

556 名前:132人目の素数さん mailto:sage [2020/05/24(日) 10:52:17 ID:efpF+9SX.net]
>>533
ありがとうございました。

557 名前:132人目の素数さん [2020/05/24(日) 10:58:08 ID:fNaRhsev.net]
でも電卓もまともに使えない池沼だと思うから
ちゃんと筆算のしかたを教えといたほうがいいよ

558 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:16:57 ID:kUAEpHSv.net]
>>532
電卓OKなら何を悩む必要があったんだ?

559 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:19:31 ID:vMsVO7tB.net]
>>536
>>526のところ
平方根して
√が付く所と付かない所がよくわからない

560 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:21:37 ID:ra0ZpDC7.net]
>>533
普通?は
 2400 = 2500 - 100
  ≒ 50^2 - 2・50 + 1
  =(50-1)^2
  =(7^2)^2
  = 7^4
を思いつくと思う。
しかし 14 で近似すると相対誤差が 1/2400 の 1/4
つまり 1/9600 もあり、たしかに精度は良くない。

  2(2400)^(1/4)= 13.998542046・・・・

そのときは e^e - π/e = 13.99853489・・・・ で近似すれば
 相対誤差 〜 5.111×10^(-7)
となり、精度が上がる。



561 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:22:50 ID:kbQGYQVt.net]
>>537
√(x^2)=|x|=±x

562 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:26:13 ID:kbQGYQVt.net]
>>538
俺のような普通の凡人はそんな近似しないな
80√6まで変形するわ

563 名前:132人目の素数さん [2020/05/24(日) 11:26:59 ID:AEzGlMaH.net]
>>539
xに1を代入すると
√(1^2)=|1|=±1
なんですね!

564 名前:132人目の素数さん mailto:sage [2020/05/24(日) 11:30:50 ID:kbQGYQVt.net]
>>541
すまん
きちんと場合分けを書かなかった

√(x^2)=|x|
x≧0のとき |x|=x
x<0のとき |x|=-x

565 名前:132人目の素数さん mailto:sage [2020/05/24(日) 14:29:21 ID:zkXg3J2u.net]
お願いします。
白球が5個、赤球が7個入った箱がある。この箱から、続けて4個の球を取り出すとき、白と赤が2個ずつになる確率を求めよ。

566 名前:132人目の素数さん [2020/05/24(日) 14:35:23 ID:AEzGlMaH.net]
14/33

567 名前:132人目の素数さん [2020/05/24(日) 14:36:55 ID:rIXEWqsA.net]
数学掲示板群 ttp://x0000.net/forum.aspx?id=1

学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など

PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0

568 名前:132人目の素数さん mailto:sage [2020/05/24(日) 14:49:56 ID:zkXg3J2u.net]
>>544
すいません選択肢を忘れてました。
1/6 1/9 1/99 5/99 7/99    7/100です

569 名前:132人目の素数さん mailto:sage [2020/05/24(日) 14:50:18 ID:zkXg3J2u.net]
上、542です

570 名前:132人目の素数さん mailto:sage [2020/05/24(日) 14:57:33.49 ID:kUAEpHSv.net]
>>546
14/33で合ってると思う
その中にはないよ



571 名前:132人目の素数さん mailto:sage [2020/05/24(日) 15:15:13.88 ID:ra0ZpDC7.net]
>>543
白玉がk個出る確率は

P_k = C[5,k]C[7,4-k]/C[12,4]

P_0 = 7/99,
P_1 = 35/99,
P_2 = 42/99,     >>544
P_3 = 14/99,
P_4 = 1/99,

572 名前:132人目の素数さん mailto:sage [2020/05/24(日) 15:27:25.24 ID:gdr5Hhlm.net]
wwwww

573 名前:132人目の素数さん [2020/05/24(日) 19:26:02.94 ID:RnWkfpP/.net]
引いた球を基に戻すのかどうかが問題

574 名前:132人目の素数さん mailto:sage [2020/05/24(日) 23:44:20 ID:ra0ZpDC7.net]
>>538
精度を高めるなら
500^2 - 460^2
=(500+460)(500-460)
= 960・40
= 2400・16
= 2401・16・(1-4δ)
≒ 7^4・2^4・(1-δ)^4
={14(1-δ)}^4,

14(1-δ)≒ 14(1 - 1/9601)= 13.99854182・・・・

だろうな。
相対誤差 〜 1.627×10^(-8)

575 名前:132人目の素数さん mailto:sage [2020/05/25(月) 00:06:57 ID:q6/HSqfM.net]
>>552
せっかくだが
俺は池沼だと言われてるけど
紛れもなくその通りで、
そんなの理解できるレベルじゃないから
↓↓こういうレベルだから


536 132人目の素数さん sage 2020/05/24(日) 11:19:31.70 ID:vMsVO7tB
>>536
>>526のところ
平方根して
√が付く所と付かない所がよくわからない

576 名前:132人目の素数さん [2020/05/25(月) 03:44:49.75 ID:G787/QIa.net]
>>552
質問した人がそこまで求めてないのによ
80√6に変形すればいいだけ
そんなにドヤ顔したいのかw

577 名前:132人目の素数さん [2020/05/25(月) 13:04:25.68 ID:HBRXfMaIe]
サイコロを5回投げ、出た5つの目を順にならべたものを目の出目とする。
このとき、5以上の目が1回だけ出るのは何通りか?

解答に 5C1*2*4^4 とあります。
2は、出目が5と6の時を表し、4^4は5と6が出ないときというのも理解できるのですが、
なぜ5C1が登場するのかが分かりません。

この問題の別の問では、5以上が1度も出ないのは解答として4^5とあります。

もし、5以上が2回出るときはという問があれば、その解答は、
5C2*2*4^3なのでしょうか?

578 名前:132人目の素数さん mailto:sage [2020/05/25(月) 13:48:22 ID:zrIMzzLv.net]
https://i.imgur.com/v2jj339.jpg
図形苦手です。分かりやすくお願いします。

579 名前:132人目の素数さん mailto:sage [2020/05/25(月) 14:22:11 ID:iTAqREcp.net]
5√3
正三角形の頂点とPを結ぶと3つの三角形に分けられる
それらの三角形は底辺が10で高さがそれぞれXP、YP、ZPということになる
従ってそれらの三角形の面積を合わせると、底辺が10で高さがXP+YP+ZPの三角形の面積と同じということになる
一方で面積の合計は当然正三角形の面積と等しいわけだから、XP+YP+ZPは正三角形の高さと等しいということになる

580 名前:132人目の素数さん mailto:sage [2020/05/25(月) 15:15:11 ID:dE6ck3kC.net]
まるでパズルだな



581 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/25(月) 15:36:58 ID:Fwr9ggMr.net]
>>554
2の5√3じゃないかな。
底角60°だし、底辺10だと

582 名前:高さ5√3だと思うんだよ。 []
[ここ壊れてます]

583 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/25(月) 15:40:20 ID:Fwr9ggMr.net]
前>>559
アンカー訂正。>>556

584 名前:132人目の素数さん mailto:sage [2020/05/25(月) 19:00:30 ID:zrIMzzLv.net]
>>557
おお!確かに正三角形の各頂点と点pを結んでやると三角形が3つ出来てその面積の和は元の正三角形の面積と同じになると!
つまり正三角形の高さが答えになるのかー!
自分のセンスの無さを痛感しましたw
>>559
ありがとうございます!

585 名前:132人目の素数さん [2020/05/25(月) 23:18:00.58 ID:sJy5IDc3.net]
>>558
答えは定数だから
ずらしていけば分かるよ

586 名前:132人目の素数さん mailto:sage [2020/05/25(月) 23:34:04 ID:dE6ck3kC.net]
>>562
なるほど
一定だとわかっていれば、頂点に近づけていけばなんとなく正三角形の高さに一致するような感じはするか
一定だとわかっていなければパズルと変わらないかな

587 名前:132人目の素数さん mailto:sage [2020/05/25(月) 23:39:51 ID:AA5iOqUX.net]
選択し問題のときはそういうテクニックもあるね

588 名前:132人目の素数さん mailto:sage [2020/05/25(月) 23:40:20 ID:AA5iOqUX.net]
別に選択肢でなくても答えだけを求められている場合は使えるか

589 名前:132人目の素数さん mailto:sage [2020/05/26(火) 00:57:34.67 ID:tKSbZInj.net]
>>559
イナさんが童貞を失ったのは何歳の時ですか?

590 名前:132人目の素数さん mailto:sage [2020/05/26(火) 04:02:28.70 ID:+baZXI+y.net]
>>563
なんとなくじゃないだろ

点Pは内部の点という事以外に特に条件が書いてないんだから
頂点と一致させればいいだけ
点P=点Aとすれば
XP=ZP=0

YP=高さ
になる
このような問題は、極端な例を当てはめればいい



591 名前:132人目の素数さん [2020/05/26(火) 05:08:45.46 ID:nSpMbtAY.net]
Pを重心にしたら
XPもYPもZPも全部高さの3ぶんの1だから
XP+YP+ZP=高さ

592 名前:132人目の素数さん mailto:sage [2020/05/26(火) 10:52:43.03 ID:moFWvn2F.net]
>>556
【No.26】 次の図のように、一辺が10cmの正三角形ABCがあり、内部に任
意の点Pがある。点Pから3辺に下した垂線と辺との交点をそれぞれ
X、Y、Z とおくとき、XP、YP、ZPの長さの合計はどれか。

1. 8 cm
2. 5√3 cm
3. 9 cm
4. 10 cm
5. 6√3 cm

593 名前:132人目の素数さん [2020/05/26(火) 11:53:38.43 ID:WL5rJTEE.net]
「a-1≦2*cos(t)≦a+1 かつ b-1≦2*sin(t)≦b+1 を満たす実数tが存在する」

これが成り立つとき、実数a,bの満たすべき条件はどうなりますか。

594 名前:132人目の素数さん mailto:sage [2020/05/26(火) 12:35:51.82 ID:tZAgiR8E.net]
>>567
「内部」の定義に頂点や辺が含まれるかどうか、それが問題だ
あと、そのような「当てはめ」はあらかじめ答えが一定だとわかっていなければ使えないので、
数学的には面白くない

595 名前:132人目の素数さん mailto:sage [2020/05/26(火) 12:39:50.44 ID:colCAYo2.net]
受験の反則テクニックみたいなもんだな
まあまともな大学だとそんな間抜けな問題出さないだろうけど

596 名前:132人目の素数さん mailto:sage [2020/05/26(火) 12:44:12.13 ID:So8CHKDZ.net]
>>570
連立不等式 (a-1)/2≦x≦(a+1)/2,(b-1)/2≦y≦(b+1)/2 の表す正方形と
x=cos(t),y=sin(t) で媒介変数表示される円が共有点をもつことが必要十分であるから
1-(√2)/2≦√((a/2)^2+((b/2)^2)≦1+(√2)/2

597 名前:132人目の素数さん mailto:sage [2020/05/26(火) 12:47:37.59 ID:So8CHKDZ.net]
>>573
正方形でなくて長方形や。あとカッコ1つ閉じ忘れた。すまん。

598 名前:132人目の素数さん [2020/05/26(火) 13:29:02 ID:9zOJBO3b.net]
>>572
クソ問題にはクソ解答で対応してさしあげるのが礼儀

599 名前:132人目の素数さん mailto:sage [2020/05/26(火) 15:17:21.91 ID:moFWvn2F.net]
中心(a/2, b/2)で一辺が1の正方形ですね。
・|a/2|≦ 3/2 かつ|b/2|≦ 1/2,
・|a/2|≦ 1/2 かつ|b/2|≦ 3/2,
・{(|a|-1)/2}^2 +{(|b|-1)/2}^2 ≦ 1 ≦{(|a|+1)/2}^2 +{(|b|+1)/2}^2,
     ・・・・ 最近

600 名前:頂点は円内、最遠頂点は円外。
のいずれか。
[]
[ここ壊れてます]



601 名前:132人目の素数さん mailto:sage [2020/05/26(火) 15:52:53 ID:+baZXI+y.net]
>>571
定義なんてどうでもいいだろ
実際に答え出るんだし

公務員試験に面白さを求めてもなw

602 名前:132人目の素数さん [2020/05/26(火) 16:13:19 ID:G+52cVgX.net]
実数a>0に対して
f(x)=sinx/(x(a-x)) (x≠0、a)
とする
f(0)とf(a)を定めて、f(x)をR上連続にしたい。これを可能にするaの値を求める

x→0で1/aが出た後どうすればいいかわかりませんよろしくお願いします

603 名前:132人目の素数さん mailto:sage [2020/05/26(火) 16:47:23.28 ID:pRQI/WUo.net]
x→aは考えた?

604 名前:イナ mailto:sage [2020/05/26(火) 18:50:42.44 ID:0DfCsAA9.net]
>>559
前々>>499
>>566二人だけの秘密だよ。

605 名前:132人目の素数さん [2020/05/26(火) 18:59:23.92 ID:Duh/3Pg5.net]
>>579
出来ましたーありがとうございます

606 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/26(火) 20:25:08 ID:0DfCsAA9.net]
前>>569
>>580
2番
5√3

607 名前:132人目の素数さん [2020/05/26(火) 21:37:54 ID:QWlAdfMs.net]
>>582
みんなとっくに解決してんだろ禿げ

608 名前:132人目の素数さん mailto:sage [2020/05/26(火) 22:13:17 ID:moFWvn2F.net]
>>576
どの場合にも
 1 ≦{(|a|+1)/2}^2 +{(|b|+1)/2}^2
は必要ですね。

609 名前:132人目の素数さん [2020/05/26(火) 23:08:01.42 ID:4f/U/+SB6]
確率統計は難しい

610 名前:132人目の素数さん mailto:sage [2020/05/26(火) 23:43:47.12 ID:6A20c8Gq.net]
日本で一番レベルの低い数学科のある大学ってどこですか?
そこの学生の数学レベルってどんなもんですか? そういうところにも宇宙人的に数学できる
天才はいたりするものですか?



611 名前:132人目の素数さん mailto:sage [2020/05/27(水) 00:25:31 ID:t80rJokb.net]
惨めなやっちゃ

612 名前:132人目の素数さん [2020/05/27(水) 08:26:02.94 ID:4ekd4s6w.net]
統計学で分散を求める時

偏差平方和を個数で割る

なぜ偏差の絶対値の和を個数で割らないの?

ガウスが偏差平方和を流行らせたから?

613 名前:132人目の素数さん mailto:sage [2020/05/27(水) 09:23:19.57 ID:KbAUF7RM.net]
平均絶対誤差の名前を分散としたらダメなのかという話だろうか?
名前がどうであろうと本質にはなんの関係もないので考えても詮無いこと

614 名前:132人目の素数さん mailto:sage [2020/05/27(水) 09:27:43.96 ID:LP9yo8FA.net]
>>588
統計ってのはビッグデータを扱うのが前提やからな。
個々のデータごとに正か負かで条件分岐するのと、単に2回かけるだけでは全然違うんや。それに比べたら絶対偏差と標準偏差の実用上の違いなんて微々たるもんや。
はるか昔のプログラム環境なら、if文なんて使いまくるとあっという間に重くなるで。ハード性能が向上したとて余計な負担は少ないほうが良い。
絶対値を2乗のルートと考えても、個々のデータすべてでルートを求めるのと最後に1回だけルートを求めるのとでは全然違う。開平計算は手間がかかるからな。
2回かけるだけってのはとても処理しやすい計算で、多量の処理に適してるんや。

615 名前:132人目の素数さん mailto:sage [2020/05/27(水) 09:47:25 ID:KbAUF7RM.net]
プログラムができるはるか以前から分散は存在してますよ

616 名前:132人目の素数さん mailto:sage [2020/05/27(水) 11:22:33.56 ID:UTiAnfUY.net]
そりゃσ使った方が計算が便利やろ
正規分布にも使うし

617 名前:132人目の素数さん mailto:sage [2020/05/27(水) 14:03:12 ID:t80rJokb.net]
ガウスも色々試して便利な方に決めたんだ

618 名前:132人目の素数さん mailto:sage [2020/05/28(木) 00:14:10.61 ID:jH44VKmc.net]
>>580
イナさんは風俗へ行ったことはありますか?

619 名前:132人目の素数さん [2020/05/28(Thu) 12:12:55 ID:Yloa4xDy.net]
(1)漸化式a1=1,(n+3)an+1=nanで定義される一般項anを求めよ
(2)漸化式 an+1=n-1/n+1anで定義される一般項を求めよ
の2つの問題の解答に
(1)はn≧4の時、(2)はn≧3の時、という言葉が出てくるのですが、この言葉は何を根拠に出てくるのでしょうか?
(1)でn≧3としてしまってはダメなのでしょうか?

620 名前:132人目の素数さん mailto:sage [2020/05/28(木) 12:27:12.83 ID:EW7h7rT9.net]
>>595
記号の書き方は>>1-4をよく読みましょう。無茶苦茶です。

>(1)はn≧4の時、(2)はn≧3の時、という言葉が出てくるのですが、この言葉は何を根拠に出てくるのでしょうか?
根拠となるべき前後の文脈が書かれていないのでわかりません。



621 名前:132人目の素数さん mailto:sage [2020/05/28(木) 12:40:51.18 ID:TDAkAggJ.net]
>>595
かいとうによる。
ある程度以上の力持つ人向けの

(n+3)(n+2)(n+1)a[n+1]=(n+2)(n+1)na[n]
より
(n+2)(n+1)na[n]=a[1]

ならn≧1で問題ない。
コレが

a[n]=(n-1)/(n+2) (n-2)/(n+1)‥2/5 1/4 a[1]‥‥(✳︎)
で約分していくと分子は最後の三項、分母は最初の三項が残る。
∴a[n]=3×2×1/((n+2)(n+1)n)a[1]

と書くなら「最初と最後の三項が残る」というなら(✳︎)は

a[4]=3×2×1/(3×2×1)a[1]

以降の式にしか通用しない表現になる。

622 名前:イナ mailto:sage [2020/05/28(木) 13:02:32.84 ID:d04cfjJJ.net]
>>582
>>594それも二人だけの秘密だよ。
そこへ行けばどんな夢も叶うというよ。
だれもみな行きたがるがはるかに遠い、だったかな?
その店の名はやっぱり秘密みたいだし、病院にお見舞いにいったときなんかやっぱ家族とかいるじゃん、名前もちがうからね、やっぱり店で逢うのがルールだよね。
まぁでも今は数学。数学のほうが楽しい。

623 名前:132人目の素数さん [2020/05/28(Thu) 13:20:03 ID:8xTQIjEC.net]
「あまりに遠い」

624 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 14:59:16 ID:ZdwW7qmx.net]
https://i.imgur.com/9uXHwDA.jpg
お願いします。

625 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 15:24:55 ID:wLFhElMJ.net]
20

626 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 15:33:37 ID:aT3kuufn.net]
>>600
中学レベルです

627 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 15:36:06 ID:Xhf6n3PC.net]
>>600
お前いつも丸投げだな

628 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 16:22:39 ID:EW7h7rT9.net]
>>600
x*1.2k+(100-x)*1.2*0.8k=100k*1.152

629 名前:132人目の素数さん mailto:sage [2020/05/28(Thu) 16:49:43 ID:Xhf6n3PC.net]
>>597
バカだな

630 名前:132人目の素数さん mailto:sage [2020/05/28(木) 23:23:13.65 ID:sdMLgnHS.net]
またお前か



631 名前:132人目の素数さん [2020/05/29(金) 00:52:36.68 ID:QZ1reWLo.net]
>>597
ありがとうございます
お陰様で理解ができました

632 名前:イナ mailto:sage [2020/05/29(金) 08:12:38.27 ID:1cGh6s7C.net]
>>598
>>599あまりで来るとはな。さすが数学板だ。
>>600マイナスになった。安売りしなかった。俺は売りきった。

633 名前:イナ mailto:sage [2020/05/29(金) 11:05:30.31 ID:1cGh6s7C.net]
>>608訂正。
>>600
仕入価格を1個x円、2割引にしてy個売ったとしたら、
x・1.2(100-y)+0.8x・1.2y=100x・1.152
120-1.2y+0.96y=115.2
0.24y=4.8
y=20
∴1番だったと思う。

634 名前:132人目の素数さん mailto:sage [2020/05/29(金) 12:03:27 ID:M44eFalP.net]
ガンダーラか、なんかありそうw

635 名前:132人目の素数さん [2020/05/29(金) 13:11:39 ID:oaJ4ELAv.net]
>>597
バカすぎてまた理解できなくなってしまいました…
a[n]が例えば
a[n]=(n-1)/(n+2)*(n-2)/(n+1)*(n-3)/n*(n-4)/(n-1)*a[n-4]だった場合、
a[n]=3×2×1/((n+2)(n+1)n)a[1]の形にはなっていなくないですか?
a[n]が成り立つのはあくまでn項ある時ではないのですか?なぜ4以上で大丈夫となるのでしょうか?

636 名前:132人目の素数さん mailto:sage [2020/05/29(金) 14:31:33.41 ID:cO4rYgZj.net]
その場合は(n mod 4)によって4つの数列に分かれますので、
それぞれに初期値(?)が必要です。
n≡1  a[n] = 3・2・1/{(n+2)(n+1)n

637 名前:pa[1]
n≡2  a[n] = 4・3・2/{(n+2)(n+1)n}a[2]
n≡3  a[n] = 5・4・3/{(n+2)(n+1)n}a[3]
n≡0  a[n] = 6・5・4/{(n+2)(n+1)n}a[4]
[]
[ここ壊れてます]

638 名前:132人目の素数さん mailto:sage [2020/05/29(金) 15:10:31 ID:fBzLvTni.net]
https://i.imgur.com/M7spoGL.jpg
図形苦手マンです。ご指導お願いします。

639 名前:132人目の素数さん mailto:sage [2020/05/29(金) 15:20:37.75 ID:JnU9GO2f.net]
確率についての質問です

点ABCDEがあり1秒ごとに移動します
AからはBかCかDに移動でき、各点に移動する確率はそれぞれ1/3です
またBからはAかDかEに移動でき、各点に移動する確率はそれぞれ1/3です

このとき、「AまたはB」から「CまたはDまたはE」に移動する確率が2/3であることの説明がイマイチ納得できません

@A→CまたはDの確率が2/3
AB→DまたはEの確率も2/3
どちらも同じだから答えは2/3

と回答にありますが、@とAを足し合わせた4/3が求める確率なのだと思ってしまいます
もちろん確率なので1を超えることはないため、2/3が正解なんでしょうけど、納得できません

640 名前:132人目の素数さん mailto:sage [2020/05/29(金) 15:44:41.64 ID:E//gMgrq.net]
Aから「CまたはDまたはE」に移動する確率も、Bから「CまたはDまたはE」に移動する確率もいずれも2/3であるってことを言ってるだけなんじゃないのかな
あまりよろしくない表現をしていると思う



641 名前:132人目の素数さん mailto:sage [2020/05/29(金) 16:50:35 ID:yY1wMQhP.net]
ガンダーラのメンバー1人最近お亡くなり。黙祷。

642 名前:132人目の素数さん mailto:sage [2020/05/29(金) 17:02:19 ID:cO4rYgZj.net]
>>613
[No.28]
 下の図のように、半径r、中心角60゚の扇形が、直線Lと接しながら、かつ、
直線に接している部分が滑ることなく矢印の方向に1回転するとき、扇形の頂
点Pが描く軌跡と直線Lとで囲まれた図形の面積として、正しいのはどれか。
ただし、円周率はπとする。

1. (2/3)πr^2,
2. (5/6)πr^2,
3. πr^2,
4. (7/6)πr^2,
5. (4/3)πr^2,

643 名前:132人目の素数さん mailto:sage [2020/05/29(金) 17:14:07 ID:E//gMgrq.net]
(5/6)πr^2

644 名前:132人目の素数さん mailto:sage [2020/05/29(金) 17:23:23 ID:cO4rYgZj.net]
90゚回り、一辺がLに垂直になる。
60゚回り、他辺がLに垂直になる。
 このときPは弧長 πr/3 だけ水平移動する。
90゚回り、他辺がLに水平になる。

645 名前:132人目の素数さん mailto:sage [2020/05/29(金) 18:16:44.60 ID:fBzLvTni.net]
>>613ですが
画像保存して図解でマークアップしてもらえると助かります。
図形苦手マンなんでイメージが掴みにくいのですみません

646 名前:132人目の素数さん mailto:sage [2020/05/29(金) 19:13:06.82 ID:E//gMgrq.net]
>>620
頑張ってイメージの訓練をしないと
扇の孤の端っこをA、B(最初に直線Lに接している方をA)とする
Pの動きを考えると、
まずAを中心に回転を始める
PがAの真上まで来ると孤で転がることになるから扇型の中心であるPは水平移動することになる
Bが直線Lに達するとそこからはPはBを中心に回転を始める
Pが直線Lに達すると扇型がPを中心に回転することになるのでPは移動しない
Aが直線Lに達したところで1回転終了

647 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/29(金) 19:45:36 ID:1cGh6s7C.net]
前>>609
>>613
L上の長さがいくらになるか。
Pが垂直に立ちあがるまではr
PがLからr離れた位置で右に円周2πの60°/360°移動してふたたびLからr離れた位置に来ることはわかると思うんだけど、そのあいだの右への移動がまっすぐなのか、弧を描いてんのか、波打ってんのかそこをはっきりさせないかん。
扇形を強くイメージして、弧がすべることなくLにくっついて離れていく様子は転がるタイヤがまっすぐ進む感じ。
頂点Pは平行移動する。
そのいどう距離は扇形の弧の長さ。すなわち2πrの1/6
求める図形は中心角90°の扇形2つで長方形を左右から挟んだ形になる。
πr^2/2+r・πr/3
5πr^2/6
∴2

648 名前:132人目の素数さん [2020/05/29(金) 21:50:44.38 ID:Pj6+bVGH.net]
簡単な問題なのに答えが冗長過ぎるのだるいんだよね

649 名前:132人目の素数さん mailto:sage [2020/05/29(金) 22:12:22 ID:V5bung/x.net]
>>620
甘えるなよ
自分で紙を切って扇形を作って動かして見ろよ

650 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/29(金) 22:31:21 ID:1cGh6s7C.net]
前>>622修正。
>>613
扇形を強くイメージし、弧がすべることなくLにくっついて離れていく様子は転がるタイヤがまっすぐ進む感じ。頂点Pは平行移動する。扇形の弧の長さ2πrの1/6
求める図形は中心角90°の扇形2つで長方形を左右から挟んだ形になる。
πr^2/2+r・πr/3
5πr^2/6
∴2



651 名前:132人目の素数さん mailto:sage [2020/05/30(土) 06:21:08 ID:THMwueAm.net]
>>625
イナさんは博士号持っていますか?

652 名前:イナ mailto:sage [2020/05/30(土) 15:49:39.72 ID:91ST8cgf.net]
>>625
>>626持ってない。せっかくなので、
数学博士👨🎓がほしいな。

653 名前:132人目の素数さん mailto:sage [2020/05/30(土) 22:44:01.91 ID:3zowlEbk.net]
学士すら無理

654 名前:132人目の素数さん [2020/05/31(日) 11:51:36.97 ID:+3pfGik0.net]
博士(数学)は筑波と京産大だけ。
あとは博士(数理科学)や博士(理学)のみ。

655 名前:132人目の素数さん [2020/05/31(日) 13:14:31 ID:9GpTwGVL.net]
0<x<y<1<x+y のとき

{(1-x)(1-y)(x+y-1)(y-x)^2}/(x+y)^2

の最大値を求めるにはどうしてくれたらいいでしょう?

656 名前:132人目の素数さん mailto:sage [2020/05/31(日) 14:02:54.80 ID:ka4VyY5w.net]
微分すればー

657 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/05/31(日) 14:39:42 ID:igjoNL49.net]
前>>627
>>630
1/300ぐらいじゃない?
x=0.2,y=0.9のとき与式=49/15125=0.003233057851……

658 名前:132人目の素数さん mailto:sage [2020/05/31(日) 19:00:50.27 ID:LICLE/8y.net]
>>631
ビブンのことはビブンでしますた。
∂(与式)/∂x =(y-1)(x-y){(x+y)(2xx+3xy-yy)-2(xx+4xy+yy)+4y}/(x+y)^2,
∂(与式)/∂y =(x-1)(x-y){(x+y)(xx-3xy-2yy)+2(xx+4xy+yy)-4x}/(x+y)^2,

{x,y} = {0.2784917784669412564745, 0.87620875991231027254378}
で最大。
 x+y = 1.1547005383792515290183
 xy = 0.2440169358562924311758
 |x-y| = 0.59771698144536901607

最大値 0.003702332976756625746
 1/27 よりわずかに小さい。

659 名前:132人目の素数さん mailto:sage [2020/05/31(日) 19:25:00.61 ID:uGI2gCsh.net]
>>633
偏微分は高校数学ではありません、失せましょう

660 名前:132人目の素数さん mailto:sage [2020/05/31(日) 19:51:06.95 ID:LICLE/8y.net]
>>633
 x,y = (1±√2 +√3)/(3+√3),
 x+y = 2/√3,
 xy = (√3 -1)/3,
 |x-y| = 2(√2)/(3+√3),

1/270 = 0.00370370・・・ よりわずかに小さい。



661 名前:イナ mailto:sage [2020/05/31(日) 20:06:56.13 ID:igjoNL49.net]
>>632
>>630
x=1/4=0.25
y=8/9=0.88…のとき、
与式={(3/4)(1/9)(41/36-1)(23/36)^2}/(41/36)^2
=(1/12)(5/36)23^2/41^2
=0.003642287…
>1/275

662 名前:132人目の素数さん mailto:sage [2020/06/01(月) 16:28:58 ID:QrFfnYLH.net]
x^3+y^3+z^3=1 を満たす正の実数x,y,zであって
(x+1)(y+1)(z+1)を最大にするものを求めよ

663 名前:132人目の素数さん mailto:sage [2020/06/01(月) 18:47:35.62 ID:LHxMDESI.net]
そうか、高校数学では ディリヴァティヴ は扱わないのか。
s = x+y, t=xy とおくと
 0 < t < 1 < s < 2,
16(1-x)(1-y)(x-y)^2 = 16(1-s+t)(ss-4t)  (← tの2次式)
 = (2-s)^4 - {(2+s)^2 -8t -8}^2   (← 平方完成)
 ≦ (2-s)^4,
より
(与式)≦ (s-1)(2-s)^4 /(16ss)
 = (2/√3 -1)^3 - g(s)(s-2/√3)^2 /(16ss)
 ≦ (2/√3 -1)^3
 = 0.003702332976
等号は s = 2/√3 = 1.1547 のとき。

g(s) = {(√3)(2-s)^3 + (3√3 -4)(2-s)^2 + 4(3√3 -5)(2-s) + 8(7-4√3)}/(√3)
 > 8(7-4√3)/√3
 = 0.331615  (s<2)
∵ 5/3 < √3 < 7/4

664 名前:132人目の素数さん [2020/06/01(月) 18:5 ]
[ここ壊れてます]

665 名前:9:08.79 ID:K8T5zY1y.net mailto: なーにがデリバティブだよ胴長短足の口臭メタボ野郎が。 []
[ここ壊れてます]

666 名前: mailto:sage [2020/06/01(月) 19:07:24.24 ID:4SAvRJTf.net]
>>636
>>637
(x+1)(y+1)(z+1)=xyz+yz+zx+xy+x+y+z+1
=1/3+3/(3の3乗根)^2+3/(3の3乗根)+1
=4/3+3の3乗根+(3の3乗根)^2
=1.33333333333+1.44224957031+2.08008382305
=4.85566672669…
x=y=z=1/(3の3乗根)=0.69336127435…のとき最大。
👯♀

667 名前:132人目の素数さん mailto:sage [2020/06/01(月) 19:14:23.38 ID:sNl9LSwh.net]
偏微分は高校数学ではないと言うが、単純に他の変数を定数だと思って微分すればいいよね
それが偏微分だと言われたら、「へーそうだったんですか」でおk

668 名前:132人目の素数さん mailto:sage [2020/06/01(月) 19:42:56.41 ID:LHxMDESI.net]
>>637
 3乗平均T ≧ 相加平均A    ・・・・ (*)
より
 (x+1)(y+1) = (A+1)^2 - (1/4)(x-y)^2
  ≦ (A+1)^2
  ≦ (T+1)^2,
∴ (x+1)(y+1)(z+1) ≦ (T+1)(T+1)(z+1),
∴ もし最大値があるとすれば、それは x=y=z に限る。

* T^3 - A^3 = (x^3 + y^3)/2 - {(x+y)/2}^3
 = (3/8)(x+y)(x-y)^2
 ≧ 0,

669 名前:132人目の素数さん [2020/06/01(月) 20:10:16.15 ID:Vp+Yn4h+.net]
>>641
偏微分特有の事柄(接平面とか極大極小とか曲面積とか)でなければ何の問題もないよ

670 名前:132人目の素数さん mailto:sage [2020/06/01(月) 20:41:39.54 ID:sNl9LSwh.net]
>>643
極大極小問題でも、
「 y を固定すれば、関数が極値をとる点では x による微分係数の値は 0 になる。 y についても同様」
くらいは使っていいよね
逆は必ずしも成り立たないことに注意しないといけないけど



671 名前:132人目の素数さん [2020/06/01(月) 20:42:48.67 ID:6r5WLvIs.net]
微分みたいな計算分野の質問はよく伸びるな
考えるような確率の問題は伸びないけどw
ただ単に式変形してるだけなのに数学気取りかいw

672 名前:132人目の素数さん mailto:sage [2020/06/01(月) 20:49:55.75 ID:QrFfnYLH.net]
>>642
もし最大値があるとすれば、それは x=y=z に限るのはなぜでしょうか?
x^3+y^3+z^3=1 が条件であり T = (x^3+y^3)/2 は定数じゃないですよね?

673 名前:132人目の素数さん mailto:sage [2020/06/01(月) 21:10:58.25 ID:QrFfnYLH.net]
f(q)={(x^q+y^q+z^q)/3}^q は q>0 の広義単調増加関数だから
f(3)≧f(2) より x^2+y^2+z^2 ≦ 3(2/3)^(1/3)
f(3)≧f(1) より x+y+z ≦ 3(1/3)^(1/3)
また 相加相乗より 1 = x^3+y^3+z^3 ≧ 3xyz だから xyz ≦ 1/3
以上から (1+x)(1+y)(1+z) ≦ 1+1/3+ 3(2/3)^(1/3)+3(1/3)^(1/3)
ここで x=y=z=(1/3)^(1/3) とすれば等号成立がいえる

以上は たぶん >>640 の人と同じ解法だとおもいます
(別の方法でしたらすみません)

674 名前:132人目の素数さん mailto:sage [2020/06/01(月) 21:14:56 ID:QrFfnYLH.net]
ちょっと訂正
x^2+y^2+z^2 ≦ 3(2/3)^(1/3) と
xy+yz+zx ≦ x^2+y^2+z^2 から
xy+yz+zx ≦ 3(2/3)^(1/3) がでてきて
これも用いています

つまり (1+x)(1+y)(1+z) = 1+(xyz)+(xy+yz+zx)+(x+y+z)
ここで 各括弧に導出した不等式を用いて上から評価しています

675 名前:132人目の素数さん mailto:sage [2020/06/01(月) 21:18:36 ID:QrFfnYLH.net]
誤) f(q)={(x^q+y^q+z^q)/3}^q は q>0 の広義単調増加関数だから
正) f(q)={(x^q+y^q+z^q)/3}^(1/q) は q>0 の広義単調増加関数だから

676 名前:132人目の素数さん mailto:sage [2020/06/02(火) 00:12:25 ID:lu0YtqDw.net]
>>645
久々の劣等感

677 名前:132人目の素数さん mailto:sage [2020/06/02(火) 00:51:57 ID:TPydHgX/.net]
>>642
x,y,z の相加平均をAとすると
 1 = 1,
 x+y+z = 3A,
 xy+yz+zx ≦ 3AA,
 xyz = G^3 ≦ A^3,   (GM-AM) 
辺々足すと
 (x+1)(y+1)(z+1) ≦ (A+1)^3,

q≧1 のとき
 f(q) ={(x^q + y^q + z^q)/3}^(1/q) ≧ A = f(1),

q≧1, f(q) = C のとき
 A ≦ C,
 (x+1)(y+1)(z+1) ≦ (C+1)^3,

678 名前:イナ mailto:sage [2020/06/02(火) 02:55:47.44 ID:rsUTVTnF.net]
>>640
携帯やスマホにGoogleや電卓がついてるから答えを出せてるだけで、紙の上でちゃんと解くなら微分だと思う。

679 名前:132人目の素数さん mailto:sage [2020/06/02(火) 03:34:07.89 ID:TPydHgX/.net]
>>635
最大値をMとおくと
M = (2/√3 -1)^3
 = (2/√3 +1)^3 - 10
 = 1/{3(2/√3 -1)}^3 - 10
 = 1/(27M) - 10,

M = 1/{27(10+M)} < 1/270 = 0.00370370・・・・

680 名前:132人目の素数さん mailto:sage [2020/06/02(火) 14:35:48 ID:B37PJwMG.net]
https://i.imgur.com/tjc3sVl.jpg
どうやったらいいですか?
とりあえず大きい円の真ん中の点を取って結んで四角形作るくらいしか思いつきません
ご指導お願いします!



681 名前:132人目の素数さん mailto:sage [2020/06/02(火) 14:54:27.74 ID:F4sjADWC.net]
>>654
大きい円の中心を頂点とする正方形について、1辺Dだから対角線は(√2)D
小さい円の半径をrとすると、この対角線は 2r+D だから
(√2)D=2r+D を解いて r=(√2-1)D/2 あとは普通に面積を出す

682 名前:132人目の素数さん mailto:sage [2020/06/02(火) 15:35:55 ID:l+S0dfS2.net]
公務員試験の問題を質問する奴
いつも丸投げだな

683 名前:132人目の素数さん mailto:sage [2020/06/02(火) 15:37:50 ID:TPydHgX/.net]
[No.17]
 下の図のように、直径Dの四つの大きい円が、一つの小さい円と接して
いるとき、小さい円の面積として正しいのはどれか。
ただし、円周率をπとする。

1. ((3-2√2)/4)πD^2,
2. ((3-2√2)/2)πD^2,
3. ((2-√3)/2)πD^2,
4. (3-2√2)πD^2,
5. (12-8√2)πD^2,

684 名前:132人目の素数さん mailto:sage [2020/06/02(火) 15:50:53 ID:iA0eGlWC.net]
>>656
こういう問題は解いたらだめだよな
高々ヒントを与える程度にしないと

685 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/02(火) 15:54:02 ID:rsUTVTnF.net]
前>>652
>>654ちっさい円の半径をrとすると面積はπr^2
とりあえず大きい円の中心のうち Dが描かれてない3つを結んで直角二等辺三角形を描いたら、
D√2= D+2r
D=2r/(√2-1)
r=(√2-1)D/2
∴πr^2={(3-2√2)/4} D
1

686 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/02(火) 15:57:20 ID:rsUTVTnF.net]
前>>659訂正。
>>654ちっさい円の半径をrとすると面積はπr^2
とりあえず大きい円の中心のうち Dが描かれてない3つを結んで直角二等辺三角形を描いたら、
D√2= D+2r
D=2r/(√2-1)
r=(√2-1)D/2
∴πr^2={(3-2√2)/4}πD^2
1

687 名前:132人目の素数さん [2020/06/02(火) 19:24:08.55 ID:iFhaGwZq.net]
もう簡単な問題でスレ活性化させるのやめにしない?
もっと唸るような問題あるだろ
yahoo知恵袋のほうがよっぽど面白いわ

688 名前:132人目の素数さん mailto:sage [2020/06/02(火) 21:25:48.83 ID:l+S0dfS2.net]
中学数学レベルだろ?
スマホで問題を見るんじゃなくて、きちんと解説が載った問題集で勉強すべきだろ

689 名前:132人目の素数さん mailto:sage [2020/06/02(火) 21:28:09.06 ID:3aWkrOv+.net]
問題にあたる段階になってないわなあ

690 名前:132人目の素数さん [2020/06/02(火) 22:22:34.67 ID:6TgIPpzJ.net]
無視すればいいだけ
ついでにイナもNGにぶっこめば平和



691 名前:132人目の素数さん mailto:sage [2020/06/03(水) 00:18:28 ID:VkvJF3Uh.net]
スレの趣旨通りじゃね?

692 名前:132人目の素数さん mailto:sage [2020/06/03(水) 03:13:26 ID:Crd/Gi4c.net]
>>665
>>1
>・まずは教科書、参考書、web検索などで調べるようにしましょう。

>・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。それがない場合、放置されることがあります。

693 名前:132人目の素数さん mailto:sage [2020/06/03(水) 14:21:22 ID:ZgrzY/Vg.net]
https://i.imgur.com/UNxlEnR.jpg
これって1番が正解なんじゃないんですか?
でも答えは2番みたいなんですよ〜解説してください!

694 名前:132人目の素数さん mailto:sage [2020/06/03(水) 14:40:39 ID:ZgrzY/Vg.net]
自己解決しました、問題よく読んでなかったです

695 名前:イナ mailto:sage [2020/06/03(水) 16:50:55.58 ID:UPuHTaSO.net]
>>660
>>667
一辺aの正方形の3/4と一辺2aの正方形を足して、
3a^2/4+4a^2=19a^2/4
ゆえに

696 名前:イナ mailto:sage [2020/06/03(水) 16:51:50.57 ID:UPuHTaSO.net]
>>660
>>667
一辺aの正方形の3/4と一辺2aの正方形を足して、
3a^2/4+4a^2=19a^2/4
∴2

697 名前:132人目の素数さん mailto:sage [2020/06/03(水) 19:57:12 ID:ZgrzY/Vg.net]
>>670
ありがとうございます!
また分からない問題を教えてくれたら嬉しいです!!!

698 名前:132人目の素数さん mailto:sage [2020/06/03(水) 20:39:28.42 ID:/UysqQI/.net]
公務員試験君とイナは別スレでやってくれ
あなた達は高校数学レベルにすら達してないからスレ違いの荒らしになってる

699 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 02:27:39 ID:lgLZHzlB.net]
>>668
自己解決してなさそう
重なった部分の面積が小さい正方形の1/4になる理由を説明出来ないだろうな

700 名前:イナ mailto:sage [2020/06/04(木) 06:56:13.45 ID:2K1+yK/D.net]
2(y-1)x^5+(y-1)(5y-2)x^4-4y(y-1)(y+2)x^3-2y(y-1)(3y^2-2)x^2-2y^3(y-1)(y-4)x+y^3(y-1)(y^2+2y-4)=0
y≠1だから2x^5+(5y-2)x^4-4y(y+2)x^3-2y(3y^2-2)x^2-2y^3(y-4)x+y^3(y^2+2y-4)=0
>>670
>>630スマホ難しいわ。とりあえずxで微分して分子=0にした。



701 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/04(Thu) 07:54:23 ID:2K1+yK/D.net]
前>>674
>>630
x=0.28,y=0.88のとき、
与式=0.003698454…≒0.0037

702 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 14:49:50 ID:9FXXJ95R.net]
https://i.imgur.com/neSWmLQ.jpg
よろしくお願い致します!

703 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 15:11:14 ID:hutHWCT6.net]
いったい何がしたいんだろうな
目的を見失っているとしか思えない

704 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 15:22:51 ID:lgLZHzlB.net]
>>676
・まずは教科書、参考書、web検索などで調べるようにしましょう。

・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。それがない場合、放置されることがあります。


つうか高校数学じゃなくて算数だろ

705 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 15:36:58 ID:M4aT4VAl.net]
貼れば誰かが答えるから
文句言っても意味なし
スルーされたら、わざと誤答して煽れば
誰か必ず食いつく

この問題は、中学入試レベルだから
「スレ違い」とだけ返せばOK

706 名前:イナ mailto:sage [2020/06/04(木) 17:34:44.39 ID:2K1+yK/D.net]
>>675
>>676
Aが160歩で歩く距離をBは200歩刻んでやで短足というか歩幅が小さいぶんピッチが多い。
Aが200歩歩くあいだにBは2400歩歩いてやで、
2000m歩いてんあいだに2400m歩いてや。
ところがさっきのピッチの話、いかんせんBは歩幅が小さい。
2400×(160/200)=1920(m)

707 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 20:19:37 ID:8nukpxTG.net]
∫1/(x^4-x^3)^(1/2)dxが分かりません

708 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 20:39:12 ID:E8KJ/FkR.net]
>>680
>>676
スレ違い荒らし死ね
指摘されてるのにスルーもするなゴミ

709 名前:イナ mailto:sage [2020/06/04(木) 21:14:04.05 ID:2K1+yK/D.net]
>>680
>>681
与式=∫{1/(x^4-x^3)^(1/2)}dx
=∫dx/√(x^4-x^3)
=∫dx/x^2√(1-1/x)
√(1-1/x)=t(t>0)と置換すると、
1-1/x=t^2
1-t^2=1/x
x=1/(1-t^2)
dx/dt=2t/(1-t^2)^2
与式=∫(1-t^2)^2×2tdt/(1-t^2)^2
=∫2tdt
=t^2
=1-1/x
こんなん出ましたけど(自信ない)


与式=

710 名前:132人目の素数さん mailto:sage [2020/06/04(木) 22:25:28.05 ID:hutHWCT6.net]
間違いだと言うことくらいはわかるだろうになぜ書き込むのか



711 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 22:30:25 ID:eoDnCkjr.net]
不定積分の問題を微分して確認しない人は数学向いてない

712 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/04(Thu) 23:25:30 ID:2K1+yK/D.net]
前>>683
なるべくこの解き方に沿って修正案を提示していただけるとうれしく思います。

713 名前:132人目の素数さん mailto:sage [2020/06/04(Thu) 23:27:58 ID:5T3Lke1B.net]
荒らしかな?

714 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/05(金) 01:14:54 ID:FqkrpUCz.net]
前>>686
>>687
そない言わんと。

715 名前:132人目の素数さん mailto:sage [2020/06/05(金) 04:25:58 ID:KXSlDNlm.net]
https://www.wolframalpha.com/input/?i=integrate+1%2Fsqrt%28x%5E4-x%5E3%29dx&lang=ja

716 名前:132人目の素数さん mailto:sage [2020/06/05(金) 06:04:39.32 ID:gPkvRYC5.net]
(1-1/x) = t (t>0) と桶。√ なしで

717 名前:イナ mailto:sage [2020/06/05(金) 14:47:25.78 ID:FqkrpUCz.net]
>>688
>>690
2√(1-1/x)
こうか。ありがと^^

718 名前:132人目の素数さん [2020/06/05(金) 21:57:20.51 ID:yz5FGsny.net]
>>445
正規直交化の前後で基底が生成する部分空間の一致が保証されるからでは

719 名前:132人目の素数さん mailto:sage [2020/06/05(金) 22:12:51.81 ID:px0E4Hoz.net]
n/2^(n+1)の無限級数の和ってどうやったら求められますか?

720 名前:132人目の素数さん mailto:sage [2020/06/05(金) 22:29:50 ID:jT734fJW.net]
>>693
f(x) =



721 名前:Σ[n=1,∞] x^n / 2^(n+1) とすると、その和は f'(1) に一致する
あとは、
f(x) - (x/2)f(x) = x / 4 より、 f(x) = x / (4 - 2x) だから、
f'(x) = 4 / (4 - 2x)^2 となるので、 f'(1) = 1
[]
[ここ壊れてます]

722 名前:132人目の素数さん mailto:sage [2020/06/05(金) 22:47:39.34 ID:jT734fJW.net]
>>693
別証明
S = Σ[n=1,∞] 1 / 2^(n+1) とおくと、
Σ[n=1,∞] n / 2^(n+1) = S + (1/2)S + (1/2^2)S + …
= (1 + (1/2) + (1/2^2) + … )S
= 2S
ここで、 S = 1/2

723 名前:132人目の素数さん mailto:sage [2020/06/06(土) 00:53:14 ID:0/4QKsok.net]
>>693
求める和を α = Σ[n=1,∞] n / 2^(n+1) と置く。
部分和を S_k = Σ[n=1,k] n / 2^(n+1) とすると、
S_(k+1) = (1/2)S_k + (1/2^2) + (1/2^3) + … + (1/2^(k+2))
であるので、 k → ∞ とすれば、
α = (1/2)α + (1/2^2) + (1/2^3) + …
= (1/2)α + 1/2
ゆえに、 α = 1

724 名前:132人目の素数さん mailto:sage [2020/06/06(土) 07:17:23.77 ID:M/kBpZYs.net]
>>694-695
バカだろ

725 名前:132人目の素数さん [2020/06/06(土) 10:18:37.74 ID:yqn3Te95.net]
証明じゃなくてただの計算だろw
何が「別証明(キリッ) 」だよw
ただの級数和の公式だろう

726 名前:132人目の素数さん [2020/06/06(土) 10:22:09.49 ID:NUJwGu92.net]
>>694-695
親切な人を装った荒らし

727 名前:132人目の素数さん mailto:sage [2020/06/06(土) 11:21:05 ID:0/4QKsok.net]
劣等感?

728 名前:132人目の素数さん mailto:sage [2020/06/06(土) 12:21:10 ID:rvhbPz7X.net]
基礎的なな質問で申し訳ないのですが答えを
1111にする場合のカッコの付け方を教えてください。

((1*10+1)*10+1)*10+1
((((1*10)+1)*10+1)*10)+1

どちらが正しいのでしょうか?

729 名前:132人目の素数さん [2020/06/06(土) 13:30:15.74 ID:Dkp6/SVK.net]
https://i.imgur.com/PYtnPd0.jpg
https://i.imgur.com/Y82zcLY.jpg
解答のEからの証明ってどのようにすればよいですか?
f(x)が実数全体で定義された連続関数だからってとこからf(x)も実数全体で微分可能であるってとこまでです
よろしくお願いします

730 名前:132人目の素数さん [2020/06/06(土) 14:03:05.19 ID:mDrJQ5NU.net]
>>702
f(x)が実数全体で定義された連続関数であり
Eの左辺が任意の実数で微分可能であるから
Eの左辺に1を加えてe^xをかけた式であるf(x)も実数全体で微分可能



731 名前:132人目の素数さん mailto:sage [2020/06/06(土) 14:11:02 ID:knI2l5x6.net]
>>701
どちらも正しい。

加法よりも乗法を先に計算するため下の式には省略可能なカッコが2組あり、それらを省略したのが上の式であるが
省略してもしなくても正しいことには変わりない。

おそらく下の式は乗法を優先することを強調するためにわざわざこんな書き方をしているのだろうが、それにしても
1番目と3番目の*はカッコを書いて2番目の*はカッコを省略するというのは意味のわからない中途半端な表記ではある。

732 名前:132人目の素数さん mailto:sage [2020/06/06(土) 14:46:57.72 ID:RyPojoqR.net]
>>693
 n/{2^(n+1)} = (n+1)/(2^n) - (n+2)/{2^(n+1)},

733 名前:132人目の素数さん mailto:sage [2020/06/06(土) 23:36:09.75 ID:wQ2P3iXZ.net]
>>679
ホントは荒らし行為かも知れないけどスレ立ててもいいかも
【公務員試験】大の大人が算数・数学の分からない問題を質問するスレ【就職試験】
文系だと何処までが算数で何処までが中学数学でどこまでが高校数学か分からんだろ

734 名前:132人目の素数さん mailto:sage [2020/06/07(日) 03:17:06.29 ID:W28nqDP7.net]
>>706
>>676にもどると、これを算数で解ける人間は一握りだろうね。
だけど、この程度の「比」の問題なら、公務員を目指す学生・社会人には数学でチャチャチャと解けて欲しいよ。

そういう意味で、スレ立ては意味のある提案だとは思う。

735 名前:132人目の素数さん mailto:sage [2020/06/07(日) 05:01:20 ID:4bXVv2ZW.net]
>>707
その問題を算数で解かないでどうすんだ?
最初の文で歩幅の比を出して
次の文で速さの比を出すだけだろ?
いちいちxやyと置いて解くのか?

736 名前:132人目の素数さん [2020/06/07(日) 07:32:24 ID:+FhDerQ9.net]
(160/200)×(240/200)×2000=1920

737 名前:132人目の素数さん mailto:sage [2020/06/07(日) 08:03:14.08 ID:47TFUNWd.net]
問題文に書かれていることがどういうことを意味しているのかを理解できるかどうかというだけの問題だわな
そして、それはとても大切なこと
こういうのは中学受験に多く、高校受験の問題よりも良問だと思うわ
今さら考える力みたいなことを言い出してるけどこういう部分は出来る子なら小学校で身につけること
しかし、多くの中学受験をしない子はそのチェックがないまま中学に上がれてしまう
そして中学ではもうそれは出来るものとして授業が進んでしまい、出来ない子は置いていかれる
置いていかれているのに中学もそのまま卒業
人によって発達する年齢には相当な差があるので授業内容をどう変えようと当然こうなってしまうことであり、
小中に留年を導入しないと改善しようがないことなのではないかと思う

738 名前:132人目の素数さん [2020/06/07(日) 10:12:00 ID:Y5GQrbHw.net]
>>710
おいおっさん
そう思うなら、高校の発展レベルの問題にも答えろよな?

739 名前:132人目の素数さん [2020/06/07(日) 10:56:17.99 ID:jtmHSlZz.net]
数研出版の数学の教科書の難しさは、難しい順に、

数学シリーズ>高等学校シリーズ>新高校の数学シリーズ>新編シリーズ>最新シリーズ


でしょうか?

740 名前:132人目の素数さん mailto:sage [2020/06/07(日) 11:46:36.87 ID:+lCwK3dr.net]
>>712
そんなことは自分で出版社にきけ。
https://www.chart.co.jp/inquiry/inquiry.html



741 名前:イナ mailto:sage [2020/06/07(日) 13:08:01.60 ID:vQmCJpRB.net]
>>691
>>680がわかりやすいよ。

742 名前:132人目の素数さん [2020/06/07(日) 14:41:06.40 ID:MYk8EsDw.net]
a+b+c=d+e=29 をみたす、互いに異なる正整数a,b,c,d,eの組は何組あるますか

743 名前:132人目の素数さん [2020/06/07(日) 18:54:30.50 ID:9d/kURtD.net]
>>703
インテグラルの中身が連続関数であれば微分可能というのは既知とする他ないですか?

744 名前:132人目の素数さん mailto:sage [2020/06/07(日) 19:14:33.59 ID:1GHLlal/.net]
微分積分学の基本定理って高校ではやらないんだっけ?

745 名前:132人目の素数さん mailto:sage [2020/06/07(日) 19:30:25.76 ID:+lCwK3dr.net]
>>716
証明も含めて教科書にきちんと載っていることなんだから既知とするのが当然ではあるが、他にないかと聞かれるとなんと答えればよいものか。

746 名前:イナ mailto:sage [2020/06/07(日) 19:53:49.88 ID:vQmCJpRB.net]
>>714
>>715
a=1のとき66×10+66+2=660+132=792(通り)
a=2のとき11×6×11=726(通り)
a=3のとき9×6×11=594(通り)
a=4のとき8×6×11=528(通り)
a=5のとき6×6×11=396(通り)
a=6のとき5×6×11=330(通り)
a=7のとき3×6×11=198(通り)
a=8のとき2×6×11=132(通り)
すべて足すと792+726+594+528+396+330+198+132=924×4=3696(通り)

747 名前:132人目の素数さん mailto:sage [2020/06/07(日) 20:35:23.99 ID:n1ByuLJ3.net]
dとeが交換できるのでさらに倍

748 名前:イナ mailto:sage [2020/06/07(日) 21:02:14.93 ID:vQmCJpRB.net]
>>719
>>720
すべての場合についてdとeが交換可能であるため2を掛けました。
てことはaとbとcが交換可能で3を掛けたのが間違いで6ですね。
3×2=6のところを6×2=12に訂正です。
∴7392組

749 名前:132人目の素数さん [2020/06/07(日) 21:08:55.95 ID:jtmHSlZz.net]
数研出版の数学の教科書の難しさは、難しい順に、

数学シリーズ>高等学校シリーズ>新高校の数学シリーズ>新編シリーズ>最新シリーズ


でしょうか?

750 名前:132人目の素数さん mailto:sage [2020/06/07(日) 21:14:26.16 ID:+lCwK3dr.net]
>>722
>>712



751 名前:132人目の素数さん mailto:sage [2020/06/07(日) 21:28:23 ID:G2FT1abr.net]
>>722
その通りです

752 名前:132人目の素数さん mailto:sage [2020/06/07(日) 21:40:44 ID:47TFUNWd.net]
サイト見る限り違うな

753 名前:132人目の素数さん mailto:sage [2020/06/08(月) 00:17:47 ID:i7RaQKPL.net]
言葉の表現についての質問です

『x>0』 は『x≦0』 の何と言えばよいですか?
言葉に出すとき、「x>0はx≦0の反対だから〜

754 名前:」と言ってしまいそうですが、反対という言葉であってるのかが心配です
厳密な定義を知りたいわけでなくて、高校生に伝わるような表現でどう言えばいいか知りたいです
[]
[ここ壊れてます]

755 名前:132人目の素数さん mailto:sage [2020/06/08(月) 00:19:51 ID:1TMcGk7U.net]
否定、です
数学的に正しい言い回しです


それよりもあなたは先生かなにかなんですかね
否定すら知らないのはちょっと心配です

756 名前:132人目の素数さん mailto:sage [2020/06/08(月) 00:23:05 ID:DAWjkcK7.net]
※ただし全順序集合に限る

757 名前:132人目の素数さん mailto:sage [2020/06/08(月) 06:41:28.65 ID:4nsS10XA.net]
>>715
a〜eはすべて異なるから
a<b<c, d<e の組合わせを求めて12倍すればよい。

(d,e) の組合わせは (1,28) (2,27) 〜 (14,15) の14組あり、1〜28をすべて含む。
 1≦a,b,c≦28 はいずれかの組に含まれる。
 また a+b, b+c, c+a≦28 だから、a,b,c は別々の組に含まれる。
∴ 各(a,b,c) に対し、重複しない (d,e) は 14-3=11 通りある。

次に(a,b,c)の組み合わせを求める。
3a+3 ≦ a+b+c = 29 より 1≦a≦8
aを固定したとき、
 (a,b,c) = (a,a+1,28-a) 〜 (a,a+k,29-k-2a) のk 通り。
 k = [14 -3a/2]
a=1 のとき 12 (通り)
a=2 のとき 11
a=3 のとき 9
a=4 のとき 8
a=5 のとき 6
a=6 のとき 5
a=7 のとき 3
a=8 のとき 2
計 56 (通り)

∴ 56×11×12 = 7392 (通り)。

758 名前:132人目の素数さん mailto:sage [2020/06/08(月) 09:42:56.80 ID:i7RaQKPL.net]
>>727
先生ではないです
ありがとうございました

759 名前:132人目の素数さん mailto:sage [2020/06/08(月) 12:56:02.62 ID:+XFuK6Gk.net]
https://i.imgur.com/VP1cbVk.jpg

これの
2a-6=0すなわちa=3のとき

なんで xはすべての実数 なのですか?
すべての数ではダメですか?

760 名前:132人目の素数さん mailto:sage [2020/06/08(月) 13:02:45.96 ID:+XFuK6Gk.net]
>>731
解答はこれです
https://i.imgur.com/sdLzjrA.jpg

虚数×0も0になると思うのですが

お願いします



761 名前:132人目の素数さん mailto:sage [2020/06/08(月) 13:29:49.69 ID:wTwxOqKF.net]
複素数には大小関係が定義されてないからな。不等式中の文字はすべて実数として扱う約束や。
少なくとも高校数学ではそういうことになっとる。教科書にそう書いてあるはずやで。

762 名前:132人目の素数さん mailto:sage [2020/06/08(月) 13:32:23.46 ID:+XFuK6Gk.net]
>>733
ありがとうございます

763 名前:132人目の素数さん mailto:sage [2020/06/08(月) 16:42:52 ID:pDoZnBKi.net]
教科書に書いてあるのは見た事ないな
複素数よりも先に不等式を習うからな

764 名前:132人目の素数さん mailto:sage [2020/06/08(月) 18:43:09.54 ID:4nsS10XA.net]
>>731
=======================
不等式 2ax ≦ 6x+1 を解け。ただし、aは定数とする


>>732
(1) 2ax ≦ 6x+1 より (2a-6)x ≦ 1
  2a-6 >0 つまり a>3 のとき x ≦ 1/(2a-6)
  2a-6 =0 つまり a=3 のとき 0・x ≦ 1 よって すべての実数xで成り立つ。
  2a-6 <0 つまり a<3 のとき x ≧ 1/(2a-6)

765 名前:132人目の素数さん mailto:sage [2020/06/08(月) 19:56:48.67 ID:DAWjkcK7.net]
そもそも「不等式 … を解け」ってなんだよ
問題文が適当すぎるだろ
「不等式 … を満たす実数 x の範囲を求めよ。ただし、a は実数の定数とする」
くらいは正確に書いてほしいものだな

766 名前:132人目の素数さん mailto:sage [2020/06/08(月) 20:05:38.08 ID:4nsS10XA.net]
>>702
 また、f(x)が実数全体で定義された連続
関数であるので、Eの左辺は任意の実数 x
で微分可能であるから、f(x)も実数全体で
微分可能である。

>>716
連続函数の原始函数が存在することは、これですでに証明されたのである。(←93頁)
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
また、連続函数f(x)の積分函数 ∫[a,x] f(t)dt が f(x) の一つの原始函数であることは
既に確定しているが、これは基本的だから定理として掲出する。  (←101頁)

定理35.
f(x) が積分区間内の一点において連続ならば、その点において積分函数F(x)は微
分可能で
     F '(x) = f(x).
(中略)
 これを 微分積分法の基本公式 という。

高木貞治:「解析概論」改訂第三版、岩波書店 (1961)
第3章 積分法 §30.p.93 §32.p.101

767 名前:132人目の素数さん [2020/06/09(火) 00:10:04.97 ID:zZFle6AK.net]
ID:4nsS10XA
こいつつまんね

768 名前:132人目の素数さん mailto:sage [2020/06/09(火) 00:15:57.89 ID:oCR5MqlE.net]
>>729
互いに異なる (a,b,c) の組合わせは何通りあるか?
 0<a<b<c としてよい。
 a+b+c = 29
 a + (b-1) + (c-2) = 26 = n,
nを3つの自然数の和に分割する方法は [ (nn+6)/12]
よって 56 (通り)

生成関数 (x^3)/{(1-x)(1-x^2)(1-x^3)}
oeis.org/A069905

769 名前:132人目の素数さん [2020/06/09(火) 00:32:04 ID:eWqkvKeO.net]
球の体積の証明で
球の体積 + 直円錐 = 円柱というのが突然出てきたんですが、知ってないとできないことなのでしょうか

770 名前:132人目の素数さん mailto:sage [2020/06/09(火) 00:32:36 ID:oCR5MqlE.net]
でも
ID:zZFle6AK
ほどぢゃない。
「高校数学」では厳密さを不問にして
表面だけ撫でてることを知らないと
あとで困るんぢゃないか?



771 名前:132人目の素数さん mailto:sage [2020/06/09(火) 00:51:06.32 ID:oCR5MqlE.net]
>>741
(1) 半径rの球
(2) 上底・下底が半径rの円で高さが2rの直円錐(砂時計形)
(3) 上底・下底が半径rの円で高さが2rの円柱
を並べて置く。

これらを水平面(z)で切った断面の面積は
 球:π(rr-zz)
 直円錐:πzz
 円柱:πrr
断面積についてはつねに
 球 + 直円錐 = 円柱
∴ それを積分した体積についても
 球 + 直円錐 = 円柱
が成り立つであろう。
これをカヴァリエリの原理と呼ぶらしい。

772 名前:132人目の素数さん mailto:sage [2020/06/09(火) 01:28:57.03 ID:ubnAyk/I.net]
>>741
>知ってないとできないことなのでしょうか
知ってなくても証明はできる。例えば回転体の体積として積分で求めればよい。

773 名前:132人目の素数さん [2020/06/09(火) 01:30:03.92 ID:poOS9jb4.net]
>>743
球の表面積の方は?

774 名前:740 mailto:sage [2020/06/09(火) 03:34:47.12 ID:oCR5MqlE.net]
そんなこと訊いてないだろ。

高さ z〜z+dz での表面積は
 球:πrr dz
 円柱:πrr dz
表面積の微分については常に
 球 = 円柱
∴ それを積分した表面積についても
 球 = 円柱
が成り立つであろう。
これもカヴァリエリの原理と呼ぶらしい。

775 名前:132人目の素数さん mailto:sage [2020/06/09(火) 03:48:39.01 ID:oH9DPAcU.net]
何でコイツ
rの2乗をr^2と書かずにrrと書くの?
いつもそうだよな?
xの2乗をxxと書くし
そんな流儀があるのか?
それともそれがカッコいいって思ってるのか?

776 名前:132人目の素数さん mailto:sage [2020/06/09(火) 03:54:14.17 ID:oCR5MqlE.net]
>>715 を改作
〔問題712〕
nは6以上の偶数とする。
a+b+c = d+e = n+3 をみたす、互いに異なる正整数a,b,c,d,eの組は何組あるますか

777 名前:132人目の素数さん mailto:sage [2020/06/09(火) 04:32:13.07 ID:57zggtO2.net]
系譜は巣から出てくるな
系譜は荒らし
系譜は質問スレ出入り禁止

778 名前:132人目の素数さん mailto:sage [2020/06/09(火) 10:14:05.44 ID:eYq+xinT.net]
>>747
カッコいいと思っているんだろうなあ
多分オイラーとかリーマンとか昔の数学者の真似してんだろ
くそダサい上に見づらいだけだが

779 名前:132人目の素数さん [2020/06/09(火) 11:09:31.32 ID:fsTBV9jN.net]
東大は、国立である以上、
教科書に載ってないことは出てはいけないと思います。

実際、教科書に載ってないことって出ますか?

780 名前:132人目の素数さん [2020/06/09(火) 11:14:51.15 ID:0gzwafh9.net]
>>747
お前バカな上に解答書いたことないだろ



781 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:19:29.01 ID:oH9DPAcU.net]
>>752
書いた事あるが

xxと書く流儀があるか聞いてんだよカス

782 名前:132人目の素数さん [2020/06/09(火) 11:20:34.36 ID:0gzwafh9.net]
>>753
どの解答? []
[ここ壊れてます]

784 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:23:49.41 ID:oH9DPAcU.net]
>>754
最近は書いてないけど

それとxxと書く事に何の関係があるんだ?
答えてみろ

785 名前:132人目の素数さん [2020/06/09(火) 11:28:03.91 ID:0gzwafh9.net]
>>755
逃げるなバカ
解答はまだか?

786 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:30:50.62 ID:oH9DPAcU.net]
>>756
逃げてるのはオマエだろカス
xxと書く流儀があるのか?
それと俺が回答を書く事に何の因果関係があるのか?
さっさと答えろよ池沼

787 名前:132人目の素数さん [2020/06/09(火) 11:32:43.06 ID:0gzwafh9.net]
>>757
いくら何でも仕事遅いぞ無能バカ
さっさとどの解答か示せ

788 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:34:59.66 ID:oH9DPAcU.net]
>>758
だからさっさと答えろよカス

何でワザワザ過去スレから探さないといけないんだ?
めんどくせー
探したらお前が金くれるの?

789 名前:132人目の素数さん [2020/06/09(火) 11:36:00.94 ID:0gzwafh9.net]
>>759
やっぱエア解答なんだ無能バカwwwww

790 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:38:06.40 ID:oH9DPAcU.net]
>>760
ほらまだ答えられない
xxと書く流儀はあるのか?
xxと書く流儀がある事と俺が回答を書いたかどうかに
何の因果関係があるのか?
さっさと答えろよキチガイ



791 名前:132人目の素数さん [2020/06/09(火) 11:39:53.44 ID:0gzwafh9.net]
>>761
正直にエア解答でしたこめんなさい><って吐いちゃいなよwwwww

792 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:42:41.51 ID:oH9DPAcU.net]
>>762
キチガイさっさと答えろ

793 名前:132人目の素数さん [2020/06/09(火) 11:45:03.27 ID:0gzwafh9.net]
>>763
おい無能バカ、エア解答ごめんなさいは?

794 名前:132人目の素数さん mailto:sage [2020/06/09(火) 11:47:00.21 ID:oH9DPAcU.net]
>>764
まだか?
答えてみろよレス乞食
俺に構ってもらえて良かったな

795 名前:132人目の素数さん [2020/06/09(火) 11:53:29.58 ID:0gzwafh9.net]
>>765
そんな細かいことはどうでもいい
エア解答ごめんなさいはどうなったんだ?無能バカ

796 名前:132人目の素数さん mailto:sage [2020/06/09(火) 12:09:26.08 ID:oH9DPAcU.net]
>>766
レス乞食
早く答えろ
流儀があるのかないのか?
ある/ない
の2択すら答えられないのかカス

797 名前:132人目の素数さん [2020/06/09(火) 17:50:11 ID:1LAHn2SY.net]
てかこいつ中川だろ?

798 名前:132人目の素数さん [2020/06/09(火) 20:13:03 ID:zZFle6AK.net]
簡単な問題を「良問扱いして」議論を伸ばし
難問は「高校数学範囲外」議論を却下し
そんな素晴らしいスレ

799 名前:132人目の素数さん mailto:sage [2020/06/09(火) 21:56:13.71 ID:Xas+ugoU.net]
>>768
Who 中川?

800 名前:132人目の素数さん [2020/06/09(火) 23:05:10 ID:L4uxQpq2.net]
>>770
おまえだよ



801 名前:132人目の素数さん mailto:sage [2020/06/10(水) 01:15:44.86 ID:Z+Aga7J8.net]
>>746
表面積については
 球 = 円柱(の側面)
と思われ

802 名前:イナ mailto:sage [2020/06/10(水) 01:57:08.02 ID:QukWOWuk.net]
>>721
>>741
半径rの球の体積=4πr^3/3
底面の半径がr,高さが2rの直円錐の体積=(πr^2/3)2r=2πr^3/3
底面の半径がr,高さが2rの円柱の体積=πr^2×2r=2πr^3
4πr^3/3+2πr^3/3=2πr^3
∴示された。

803 名前:132人目の素数さん [2020/06/10(水) 03:15:55.62 ID:m+greBcM.net]
教えて欲しいのですが+0と-0ってなんですか?

804 名前:132人目の素数さん mailto:sage [2020/06/10(水) 07:33:38.04 ID:Z+Aga7J8.net]
>>748
a〜eは互いに異なるから
 a<b<c, d<e の組合せを求めて 12倍すればよい。

(a,b,c)の組合せ
a,b,c は互いに異なるから a ≦ b-1 ≦ c-2,
 a + (b-1) + (c-2) = n,
nを3つの自然数の和に分割する方法の数 q_3(n) と同じ。
 q_3(n) = q_2(n-1) + q_3(n-3),
 q_2(n) = q_1(n-1) + q_2(n-2),
 q_1(n) = 1 - δ(n,0)
より
 q_3(n) = [(nn+6)/12] = nn/12 + D(2)/4 - D(3)/3,
 D(m) = 1- δ(mod(n,m),0)
   = 0 ・・・・ nがmの倍数
   = 1 ・・・・ その他
 oeis.org/A069905

(d,e) の組合せ
(1,n+2) (2,n+1) ・・・・ (n/2 +1, n/2 +2) の (n/2 +1) 組。
1,2, 〜 n+2 を1度づつ含む。
∴ a,b,cはどれか1つの組に含まれる。
a+b,b+c,c+a≦n+2 より、a,b,cは別々の組に含まれる。
各(a,b,c)に対し、重複しない(d,e) が (n/2 -2) 通りある。

以上から、求めるものは
 12 [ (nn+4)/12] (n/2 -2) = 6(n-4) [ (nn+4)/12]  (通り)

805 名前:132人目の素数さん mailto:sage [2020/06/10(水) 07:43:47.19 ID:99gbvYau.net]
証明で出て来たって言ってんのに

806 名前:132人目の素数さん mailto:sage [2020/06/10(水) 08:27:37.51 ID:Z+Aga7J8.net]
>>775
nを自然数の和で

807 名前:表わす方法のうち、
k個の和で表わすものの数 q_k(n) を
「制限付き分割数」と云うらしい。
 "1" を含むものと含まないものに分ければ
  q_k(n) = q_{k-1}(n-1) + q_k(n-k),

 数セミ増刊「数学100の問題」日本評論社 (1984)
 p.58
[]
[ここ壊れてます]

808 名前:132人目の素数さん mailto:sage [2020/06/10(水) 12:36:16.40 ID:fnMO25U7.net]
>>774
その記号単体で意味をなすものではないが、極限を表す記号 lim とともに用いられる値の近づけ方を表す記号である。

lim_[x→a+0]f(x)=c は「xの値をx>aを満たしながら限りなくaに近づけたとき、f(x)の値は限りなくcに近づく」
lim_[x→a-0]f(x)=c は「xの値をx<aを満たしながら限りなくaに近づけたとき、f(x)の値は限りなくcに近づく」
を表す。ちなみに+0や-0を用いずに単に lim_[x→a]f(x)=c と書く場合は
「xの値をいかなる近づけ方でaに近づけたときも、f(x)の値は限りなくcに近づく」を意味する。

そして、とくに a=0 のとき上記の式中に現れる「x→0+0」を「x→+0」、「x→0-0」を「x→-0」と略記する。

809 名前:132人目の素数さん mailto:sage [2020/06/10(水) 12:44:14.08 ID:LtYLThtu.net]
教科書に書いてある事をわざわざ解説
親切な奴だなw

810 名前:132人目の素数さん mailto:sage [2020/06/10(水) 14:00:25.13 ID:+woTaEyY.net]
>>774
自分で調べる事も出来ないんでちゅか、そうでちゅか〜。幼稚園からやり直した方がいいんじゃね?

−0 - Wikipedia
https://ja.m.wikipedia.org/wiki/-0

IEEE 754における負のゼロ Wikipedia
https://ja.wikipedia.org/wiki/IEEE_754%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E8%B2%A0%E3%81%AE%E3%82%BC%E3%83%AD



811 名前:132人目の素数さん mailto:sage [2020/06/10(水) 14:32:58.62 ID:+woTaEyY.net]
高校数学から外れた分野の事を教えられたからって文句は言えませんでちゅね〜

812 名前:132人目の素数さん [2020/06/10(水) 15:42:24.16 ID:m+greBcM.net]
>>778
ありがとうございます!

813 名前:132人目の素数さん mailto:sage [2020/06/10(水) 15:42:56.03 ID:QcYGbPiy.net]
馬鹿にしてる以上の意味はないな

814 名前:132人目の素数さん [2020/06/10(水) 17:49:43.06 ID:acojsJsG.net]
n次の相加平均相乗平均の関係の証明についてです。
代数的手法での証明方法はわかったのですが、

https://youtu.be/VYwa3v7CsXU?t=965

この部分

al=(a1+a2+......+al-1)/(l-1)

の部分ってどういう着想で出てきたものなのでしょうか?
確かに代入したらあってるのはわかりますよ?でもさァって気持ちになるんですよネ。

815 名前:132人目の素数さん mailto:sage [2020/06/10(水) 17:53:52.50 ID:IytrphJL.net]
>>784
クソ動画乙
低評価押しときますね
質問はそのクソ動画のコメント欄でどうぞ

816 名前:132人目の素数さん mailto:sage [2020/06/10(水) 18:06:30.23 ID:fnMO25U7.net]
>>784
着想も何も左側のBを示すのだから必然そのもの。その部分は頭を使うタイミングではなく消化試合。
方針に従って当然のことを当然の流れとしてやっているだけ。何の不思議もない。

817 名前:132人目の素数さん mailto:sage [2020/06/10(水) 19:05:05.95 ID:JmS3REZc.net]
>>786
信者くっさ

818 名前:イナ mailto:sage [2020/06/11(木) 00:31:29.63 ID:HD+2bCOB.net]
>>773
>>748
n=26のとき7392組
(n-4)(n^2-4)/2
n=6のとき36組
(n-4)n^2/2
5≦n≦25のときそのどちらかになるか、まったく違う式になるかは調べてみないとわからない。

819 名前:132人目の素数さん mailto:sage [2020/06/11(木) 02:17:40.52 ID:2VKGJNso.net]
>>784
nがある条件(偶数とか2ベキとか)を満たす場合は成立する
、とする。
nがそれ以外のときはどうするか?

元々はn文字だが、条件を満たすまで増やそう。(L文字)
新たに増えた

820 名前:カ字には(元の)相加平均A を入れておこう。
 A' = A
相乗平均は G' = {G^n・A^(L-n)}^(1/L) になる。
Lは条件を満たすから A' ≧ G'
これより A ≧ G.

ときどき使う方法。
[]
[ここ壊れてます]



821 名前:132人目の素数さん mailto:sage [2020/06/11(木) 03:42:25.26 ID:2VKGJNso.net]
新しく増えた文字を(元の)相乗平均G で埋める流儀もある・・・・
 A' = (nA +(L-n)G)/L, G' = G

822 名前:132人目の素数さん mailto:sage [2020/06/11(木) 10:03:44.29 ID:OZlwncEE.net]
x^2をxxと書く流儀w

823 名前:132人目の素数さん mailto:sage [2020/06/11(Thu) 13:52:39 ID:wEI2iMzu.net]
べき計算が使えんのだろ

824 名前:132人目の素数さん mailto:sage [2020/06/11(木) 14:16:40.49 ID:KOAB8uG9.net]
2つの整式
P(x)=X^4+ax^3+bx^2+cx+12
Q(x)=x^4+cx^3+bx^2+ax+12(ただしa≠c)
について
(1)整式P(x)とQ(x)が、1次式の共通な因数を持つ時、P(x)を因数分解せよ。
(2)整式P(x)とQ(x)が、2次式の共通な因数を持つ時、b~2-c~2をaを用いて表わせ。

という問題が古い赤チャートの総合問題にあったのですが、
解法のヒントで
(1)P(x)-Q(x)の因数が、P(x)とQ(x)の共通因数の候補者。
と書いてあったのですが、
P(x)からQ(x)を引く論拠はどこにあるのでしょうか?また、引いて出た整式は何を意味するのでしょうか?
解法のテクニックという解答しかどこを見ても書いていないので根本的な理由をお教え願えませんか?

825 名前:132人目の素数さん mailto:sage [2020/06/11(木) 14:21:04.28 ID:h09rTRG1.net]
>>793
共通因数があるならP(x)-Q(x)はその共通因数でくくれるわけだから、その共通因数はP(x)-Q(x)の因数でもある

826 名前:132人目の素数さん mailto:sage [2020/06/11(木) 14:22:29.05 ID:h09rTRG1.net]
引き算すると次数を下げられる

827 名前:791 mailto:sage [2020/06/11(木) 15:18:14.65 ID:+nbWxkMs.net]
レスありがとうございます。

>共通因数があるならP(x)-Q(x)はその共通因数でくくれる
「P(x)、Q(x)に共通因数があるならP(x)-Q(x)はその共通因数でくくれる」という意味ですか?そこがよくわからないのです。
現役時代は
>>795のように引き算をすると次数が下げられるというテクニックでしか覚えていなかったもので、
今になってやり直しをしてみてまるで理解していなかったと痛感しています。

828 名前:790 mailto:sage [2020/06/11(木) 15:21:13.17 ID:+nbWxkMs.net]
>>794
失礼しました。考えてみたら当たり前でした。。。
>共通因数があるならP(x)-Q(x)はその共通因数でくくれる

久しぶりに数学をやったので頭がショートしてました。
どうもありがとうございました。

829 名前:132人目の素数さん mailto:sage [2020/06/11(木) 15:22:51.62 ID:0dXcUyFO.net]
A(x)B(x)-A(x)C(x)=A(x)(B(x)-C(x))

830 名前:790 mailto:sage [2020/06/11(木) 15:29:05.59 ID:+nbWxkMs.net]
>>798
レスありがとうございます。



831 名前:132人目の素数さん mailto:sage [2020/06/11(木) 15:31:52.28 ID:Fk4W8Zay.net]
>>797
それをアルゴリズム的にまとめたものがユークリッド互除法だね

832 名前:132人目の素数さん [2020/06/11(木) 16:45:56.75 ID:aF/rqx/4.net]
3乗ぐらいまでxxxでいいじゃん楽だし

833 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:11:28.37 ID:BKR8ryKK.net]
読む人のことを考えていなければただの落書きや

834 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:32:17.12 ID:omJiDHpK.net]
だからいつまでも無職なんやで

835 名前:132人目の素数さん [2020/06/11(木) 18:45:30.84 ID:AOQc+b38.net]
明日、雨が降る確率をp1とする。
明日、地震が起きる確率をp2とする。
明日、雨が降り、かつ地震が起きる確率をp3とする。
p1, p2に任意の確率を割り当てるとします。
p3はp1, p2に依存しますか?それとも、p3にも任意の確率を割り当てることができますか?

836 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:46:14.98 ID:gFwODw6Y.net]
雨と地震は互いに独立なの?

837 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:46:24.16 ID:AOQc+b38.net]
p3に割り当てることができる確率の範囲を教えて下さい。

838 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:47:25.33 ID:AOQc+b38.net]
>>805
独立ではない場合を考えます。

839 名前:イナ mailto:sage [2020/06/11(木) 18:49:08.56 ID:HD+2bCOB.net]
>>788
>>748
n=6のとき36組
n=7のとき60組
n=8のとき120組
n=9のとき168組
n=10のとき288組
与式=pn^4+qn^3+rn

840 名前:^2+sn+tとおくと、
5式あるで決まるはずやが、
p=-182/1811,q=13486/5433,r=-8114/1811
あとs,t出してn=26のときで検算、7392組になればいい。
[]
[ここ壊れてます]



841 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:49:52.10 ID:gFwODw6Y.net]
p1とp2のうち低い方をpとして
0≦p3≦p

842 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:51:18.25 ID:gFwODw6Y.net]
すまん適当に答えたが下0でない場合あるわ

843 名前:132人目の素数さん mailto:sage [2020/06/11(木) 18:53:59.83 ID:gFwODw6Y.net]
下は
p1+p2-1と0のうち大きい方

844 名前:132人目の素数さん mailto:sage [2020/06/11(木) 19:05:14.95 ID:AOQc+b38.net]
>>811
それはどうやって考えれば導けますか?

845 名前:790 mailto:sage [2020/06/11(木) 21:20:31.71 ID:+nbWxkMs.net]
>>798
しつこくて申し訳ないのですが、P(x)-Q(x)なのはx^4で引き算をするとちょうどx^4が消えて次数が下がるからで、
例えばP(x)=x^4〜 Q(x)=-x^4〜の場合はP(x)+Q(x)という足し算をするのでしょうか?

846 名前:132人目の素数さん mailto:sage [2020/06/11(木) 21:25:47.35 ID:h09rTRG1.net]
次数を下げたいならそうすることになるわな

847 名前:132人目の素数さん [2020/06/11(木) 21:28:26.18 ID:GNvLkFMY.net]
この場合はひきざんすれば良いとすぐわかるが、互除法をやってると考えればいい

848 名前:132人目の素数さん mailto:sage [2020/06/11(木) 21:30:38.50 ID:gFwODw6Y.net]
>>812
イメージとしてはベン図かな?

849 名前:132人目の素数さん [2020/06/11(木) 21:46:52.24 ID:3VtnJ1Cd.net]
https://i.imgur.com/h8APSLV.jpg
極限を求めるだけならできるのですが、これは区分求積法では求られませんか?
よろしくお願いします

850 名前:イナ mailto:sage [2020/06/11(木) 22:00:14.56 ID:HD+2bCOB.net]
>>808
>>748
この調子で11≦n≦25の与式をすべて求めると、
21式が、
未知の係数f〜zを使って表される。
未知数21個が整数で決まれば与式は決まる。



851 名前:132人目の素数さん mailto:sage [2020/06/11(Thu) 22:39:18 ID:sDGE1TEq.net]
>>817
それ発散しない?

852 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/11(Thu) 23:06:04 ID:HD+2bCOB.net]
前>>818
>>748
n=11のとき与式=14
1+6+7=5+9=4+10=3+11=2+12 48組
1+5+8=4+10=3+11=2+12 36組
このように48組か36組になり、
48×3+36×7=378(組)
n=12のとき48組が12パターンで576組

853 名前:132人目の素数さん [2020/06/11(木) 23:34:26.60 ID:3VtnJ1Cd.net]
>>819
シグマの前に1/nがついてました…
これなら区間をn^2個に分割して求られそうですね…
失礼しました
ありがとうございます

854 名前:132人目の素数さん mailto:sage [2020/06/12(金) 01:20:23.49 ID:tX9D9+ik.net]
本問では、kの1次式だから
 (1/nn) (k/nn) = ∫_{(k-1/2)/nn} ^{(k+1/2)/nn} x dx
が成り立つ。
これを k=1 から k=nn まで足せば
(1/nn)Σ_{k=1} ^{nn} (k/nn) = ∫_{1/(2nn)} ^{1+1/(2nn)} x dx
 = [ xx/2 ]_{1/(2nn)} ^{1+1/(2nn)}
 = (1/2){ (1+1/2nn)^2 - (1/2nn)^2 }
 = (1/2){1 +1/(nn)},

(注)
もちろん試験の答案では x^2 か x・x に限るぞ。
普段からそういう書き方に慣れておこう。 
xx だと、xかけるx か xx という名前か判らない
と言って減点する人もいるから気をつけよう。

855 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/12(金) 01:37:31 ID:Yn8PoMOn.net]
前>>820訂正。
n=11のとき与式=396=12×33
n=12のとき与式=576=12×48
n=13のとき与式=624=12×52
n=14のとき与式=900=12×75
……
n=26のとき与式=7392=12×616

856 名前:132人目の素数さん mailto:sage [2020/06/12(金) 01:50:36.28 ID:tX9D9+ik.net]
>>800
>>815
互除法により
 D(x) = P(x) - Q(x) = (a-c)(x^3 -x),   a-c≠0
 P(x) - (x+a)D(x)/(a-c) = (1+b)xx +(a+c)x +12,
は P(x), Q(x) の共通因数を含む。

(注)
もちろん試験の答案では x^2 か x・x に限るぞ。
普段からそういう書き方に慣れておこう。 
xx だと、xかけるx か xx という名前か判らない
と言って減点する人もいるから要注意。

857 名前:132人目の素数さん mailto:sage [2020/06/12(金) 03:57:36.53 ID:tX9D9+ik.net]
>>775
(a,b,c)の組合せ
 q_3(n) = [(nn+6)/12] (通り)
このうち c=(n+3)/2 となるものは
 0     (n:偶数)
 [ (c-1)/2 ] = [ (n+1)/4 ]

858 名前:  (n:奇数)

(d,e) の組合せ
[n/2] +1 組あり、1,2, 〜 n+2 を1度ずつ含む。
但し、nが奇数のときはの中央の (n+3)/2 が抜ける。

各(a,b,c) に対し、重複しない (d,e) は
 c=(n+3)/2 のとき (n-3)/2 (通り)
 c≠(n+3)/2 のとき [n/2] -2 (通り)

以上から、求めるものは
 12( [ (nn+6)/12 ](n-5)/2 + [ (n+1)/4 ] )  (n:奇数)

例)
 n=9 のとき 12(14+2) = 192
   (上記 c=(n+3)/2 を考慮しなければ 168組)
[]
[ここ壊れてます]

859 名前:132人目の素数さん [2020/06/12(金) 04:44:49 ID:sAyzRZZl.net]
>>822
めちゃくちゃ丁寧にありがとうございます!
また質問あればよろしくお願いします

860 名前:132人目の素数さん [2020/06/12(金) 05:31:35.72 ID:ix0YollP.net]
>>824
>xx だと、xかけるx か xx という名前か判らない
>と言って減点する人もいるから要注意。
xyだと、xかけるyかxyという名前か判らないと言って減点する人居ないのに



861 名前:132人目の素数さん mailto:sage [2020/06/12(金) 06:34:38.73 ID:OmqnjEFT.net]
xxと書く人
カッコいいな
この板では「リーマンさん」と呼ぶべき

862 名前:132人目の素数さん mailto:sage [2020/06/12(金) 07:26:54.20 ID:3Aaj7IHC.net]
個人的には読みづらいのでテンプレに添って欲しい

863 名前:132人目の素数さん mailto:sage [2020/06/12(金) 11:16:10.26 ID:dnFTYwvr.net]
みにくいだけなんだよなあ

864 名前:132人目の素数さん mailto:sage [2020/06/12(金) 12:17:54.83 ID:OmqnjEFT.net]
リーマンさんの評判悪いねw

865 名前:イナ mailto:sage [2020/06/12(金) 12:56:23.60 ID:1EQabYVX.net]
>>823
>>748
n=15のとき与式=18
1+8+9=7+11
=6+12
=5+13
=4+14
=3+15
=2+16
12×6=72
1+7+10=6+12
=5+13
=4+14
=3+15
=2+16
12×5=60
72×4+60+15=288+900
=1188(組)

866 名前:132人目の素数さん mailto:sage [2020/06/12(金) 13:17:32.43 ID:sb1SCFWe.net]
xx で減点とかないでしょ みなれないだけで正当だよ
あまりみないというだけで誤りとかどこの脳死アルバイターだよ

867 名前:132人目の素数さん mailto:sage [2020/06/12(金) 13:23:57.64 ID:4/NTXE5n.net]
馬鹿の正当化

868 名前:132人目の素数さん mailto:sage [2020/06/12(金) 13:24:46.37 ID:OmqnjEFT.net]
このスレでの表記はともかく
テストでx^2と書くべきところをxxと書けば減点されても仕方ないでしょ
計算途中の式なら別だが

869 名前:132人目の素数さん mailto:sage [2020/06/12(金) 13:42:27 ID:jSKeY+9z.net]
https://i.imgur.com/4QV47aY.jpg
お久しぶりです!よろしくお願い致します!

870 名前:132人目の素数さん mailto:sage [2020/06/12(金) 13:48:32 ID:38JaBefr.net]
どこに悩む要素があるのかわからん



871 名前:132人目の素数さん [2020/06/12(金) 13:56:49.35 ID:64COuR/+.net]
これが高校レベル?

872 名前:132人目の素数さん [2020/06/12(金) 14:19:15.35 ID:Q+PdORC7.net]
4^x>2・5^(1+x) この不等式のxの範囲を求めよ ただしlog2=aとし、aで表せ

この答えわからないです、、

873 名前:132人目の素数さん [2020/06/12(金) 14:20:42.24 ID:Q+PdORC7.net]
logの底は10です

874 名前:132人目の素数さん mailto:sage [2020/06/12(金) 14:44:25.79 ID:dnFTYwvr.net]
5 = 10/2

875 名前:132人目の素数さん mailto:sage [2020/06/12(金) 14:47:15.76 ID:dnFTYwvr.net]
>>836
数学ですらない
公務員試験板でやれ
https://medaka.5ch.net/govexam/

876 名前:132人目の素数さん mailto:sage [2020/06/12(金) 17:36:58.97 ID:wuPEZyvV.net]
>>817
Σ[k=1, n^2] k が計算できないのか

877 名前:イナ mailto:sage [2020/06/12(金) 17:39:51.95 ID:1EQabYVX.net]
>>832
>>748
n=16のとき与式=19
1+8+10=7+12=6+13=5+14=4+15=3+16=2+17
72(7+6+4+3+1)=12×6×21=12×126=1260+252=1512
n=17のとき与式=20
1+9+10=8+12=7+13=6+14=5+15=4+16=3+17=2+18
1+8+11=7+13=6+14=5+15=4+16=3+17=2+18
84×5+72(7+6+4+1+2)=12×35+12×6×20=12×155=1860(組)

878 名前:132人目の素数さん [2020/06/12(金) 19:30:10.46 ID:h6HNVDVS.net]
>>843
区分求積でって言ってるのにまさか等差の和で処理しろって言いたいんじゃないよな
そもそも極限は出せると言ってるじゃん

879 名前:イナ mailto:sage [2020/06/12(金) 20:53:15.07 ID:1EQabYVX.net]
>>844
>>748
n=18のとき与式=21
1+9+11=8+13=7+14=6+15=5+16=4+17=3+18=2+19
ほかの組み合わせもすべて84組あり、
84×(8+7+5+4+2+1)=12×189=2268(組)

880 名前:132人目の素数さん [2020/06/12(金) 22:15:59.64 ID:2qIWoTl+.net]
なんで自



881 名前:称俳優崩れのアホで孤独なおっさんがいつまでも居座ってるの? []
[ここ壊れてます]

882 名前:132人目の素数さん mailto:sage [2020/06/13(土) 00:45:39 ID:HTMGcHIc.net]
>>748
nが偶数のとき >>775
nが奇数のとき >>825
最小解は
 n=5  12通り (a,b,c,d,e) = (1,3,4,2,6)

883 名前:132人目の素数さん mailto:sage [2020/06/13(土) 00:46:25.91 ID:HTMGcHIc.net]
>>817
区分求積法によらなくても、そのまま定積分で表わせる。(←1次式)
 (1/nn)Σ_{k=1} ^{nn} (k/nn) = ∫_{1/(2nn)} ^{1+1/(2nn)} x dx
あとで極限とればいい。 >>822

884 名前:132人目の素数さん mailto:sage [2020/06/13(土) 00:47:58.99 ID:HTMGcHIc.net]
>>839
 1/10 > (5/4)^x = (10/8)^x,
両辺の常用対数をとると
 -1 > (1-3a)x,
1-3a = log(10/8) (>0)で割って
 -1/(1-3a) > x,

885 名前:イナ mailto:sage [2020/06/13(土) 01:05:12.68 ID:CPLScqnr.net]
>>846
>>748
n=19のとき与式=22
12×215=2580

886 名前:132人目の素数さん mailto:sage [2020/06/13(土) 11:28:36.53 ID:WGNBaVce.net]
>>817
N = n^2 とおけばそのまま区分求積の形

887 名前:132人目の素数さん mailto:sage [2020/06/13(土) 14:23:19.57 ID:zINDmmqO.net]
既に終わった問題にいつまでもレスがつく
アホなの?

888 名前:132人目の素数さん [2020/06/13(土) 14:34:51.74 ID:bxS2nYQ+.net]
そうだよアホだよ〜♪

889 名前:132人目の素数さん mailto:sage [2020/06/13(土) 14:44:32 ID:P5SaBG0O.net]
やはり高校数学スレだから子供のノリが多いな

890 名前:132人目の素数さん [2020/06/13(土) 16:01:29.01 ID:dLWl/Qpv.net]
なんだと!ガキのくせしやがって!



891 名前:132人目の素数さん mailto:sage [2020/06/13(土) 17:53:59.92 ID:fYWj7psU.net]
2014の阪大の問題
ax-by=2 , bx+ay=-3 から交点を求めるときに、第1式☓a +第2式☓bとすると同値でなくなりますよね?
a^2+b^2>0という条件はあります

892 名前:132人目の素数さん [2020/06/13(土) 18:17:21.51 ID:dLWl/Qpv.net]
>>857
あたりめーだろアホ

893 名前:イナ mailto:sage [2020/06/13(土) 19:30:17.31 ID:CPLScqnr.net]
>>851
>>857
aby=a(ax-2)=b(-bx-3)
(a^2+b^2)x=2a-3b
x=(2a-3b)/(a^2+b^2)
by=a(2a-3b)/(a^2+b^2)-2
y=(2a^2-3ab-2a^2-2b^2)/(a^2+b^2)
=(-3ab-2b^2)/(a^2+b^2)
交点の座標は、
((2a-3b)/(a^2+b^2),(-3ab-2b^2)/(a^2+b^2))

894 名前:132人目の素数さん mailto:sage [2020/06/13(土) 20:17:19.12 ID:fYWj7psU.net]
>>859
どうもです
aby=a(ax-2)=b(-bx-3)
これって、第1式をa倍してるわけで、aが0でないときしか同値にならないのでは?
だからa=0かそうでないかで場合分けが必要かと

895 名前:132人目の素数さん [2020/06/13(土) 20:22:50.01 ID:dLWl/Qpv.net]
>>860
だからあたりめーだつってんだろーが

正しいことを言ってる俺を無視して間違ってるほうの4流俳優崩れのアホにレスつけてどーすんだよ池沼が。

896 名前:132人目の素数さん mailto:sage [2020/06/13(土) 20:58:48 ID:oNMmcXtZ.net]
この日本って国は言ってる事の正否より口の聞き方の方が重要だから。
コミュ障がネットをいい事に一生懸命イキッてみた所で舐めて掛かられるだけ。

897 名前:132人目の素数さん mailto:sage [2020/06/13(土) 21:19:06.22 ID:zINDmmqO.net]
イナって俳優だったのか?
知らんかったわw

898 名前:132人目の素数さん [2020/06/13(土) 21:32:57.21 ID:dLWl/Qpv.net]
>>862
こっちも徹底的に舐めてかかってるからいいんだよ包茎小僧w

899 名前:132人目の素数さん mailto:sage [2020/06/13(土) 21:49:26 ID:oNMmcXtZ.net]
惜しい、包茎中年だ

900 名前:132人目の素数さん mailto:sage [2020/06/13(土) 21:50:20 ID:GLb+7uTu.net]
高校生が人に小僧というの面白いな



901 名前:132人目の素数さん [2020/06/13(土) 21:56:59.17 ID:dLWl/Qpv.net]
>>866
じゃあ大学数学に挫折して高校数学もろくにできない馬鹿禿げメタボオヤジって呼べばいい?

902 名前:132人目の素数さん mailto:sage [2020/06/13(土) 22:03:43.44 ID:Aqd0+Rsc.net]
数学やる人間が詭弁を弄するな
藁人形だぞ

903 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/06/13(土) 22:13:22 ID:CPLScqnr.net]
前>>859
>>748
n=20のとき与式=23
a,b,c,d,eの組み合わせは3168組
12で割ると264
n=21のとき与式=24

904 名前:
a,b,c,d,eの組み合わせは3612組
12で割ると301
あってる?
ガウス記号使うしかない?
[]
[ここ壊れてます]

905 名前:132人目の素数さん [2020/06/13(土) 22:27:29.84 ID:dLWl/Qpv.net]
>>868
でもお前無能じゃん

906 名前:132人目の素数さん [2020/06/13(土) 23:02:55 ID:ONM3HnxC.net]
関数の極限についての質問です。
lim [x→1] (x^2-1)/(x^3-1)=a
a=2/3となるようです。
どのようにaが導かれるのか、どなたかご教授頂けませんでしょうか

907 名前:132人目の素数さん mailto:sage [2020/06/13(土) 23:16:42.07 ID:mCUarv56.net]
>>871
約分してみな

908 名前:132人目の素数さん [2020/06/13(土) 23:59:30.77 ID:ONM3HnxC.net]
>>872
あらびっくり
ありがとうございます

909 名前:イナ mailto:sage [2020/06/14(日) 01:39:49.96 ID:g0bjpO19.net]
>>869
>>748
n=22のとき与式=25
a,b,c,d,eの組み合わせは4320組
12で割ると360
n=23のとき与式=26
a,b,c,d,eの組み合わせは4824組
12で割ると402

910 名前:イナ mailto:sage [2020/06/14(日) 02:36:45.27 ID:g0bjpO19.net]
>>874
>>860こう?
a=0のときbx=-3,by=-2
交点(x,y)=(-3/b,-2/b)



911 名前:132人目の素数さん mailto:sage [2020/06/14(日) 10:36:00.04 ID:W9iec+A0.net]
>>875
そうです
ところがそんなふうに場合分けしている解答って全くないです
場合分けなしでこの問題は計算だけの簡単な問題とネットではなってます

912 名前:132人目の素数さん mailto:sage [2020/06/14(日) 10:50:02.16 ID:/QP0hIPm.net]
質問者も回答&アドバイスする人も
紙に書いてアップしあったほうが
楽だろうに。

913 名前:132人目の素数さん [2020/06/14(日) 11:19:23.18 ID:AQ6AbVag.net]
>>877
アップする方法をしらない頓馬なんだろ

914 名前:イナ mailto:sage [2020/06/14(日) 12:44:48.05 ID:g0bjpO19.net]
>>875
>>748
n=24,与式=27
1+12+14=11+16
=10+17
=9+18
=8+19
=7+20
=6+21
=5+22
=4+23
=3+24
=2+25
12×10=120
1+11+15=13+14
=10+17
=9+18
=8+19
=7+20
=6+21
=5+22
=4+23
=3+24
=2+25
120(11+10+8+7+5+4+2+1)=12×10×48
=12×480
=4800+960
=5740(組)

915 名前:イナ mailto:sage [2020/06/14(日) 14:04:37.96 ID:g0bjpO19.net]
>>879
>>748
n=25のとき与式=28
1+13+14=12+16
=11+17
=10+18
=9+19
=8+20
=7+21
=6+22
=5+23
=4+24
=3+25
    =2+26
12×11=132
1+12+15=11+17
12×10=120
2+12+14=13+15
=11+17
=10+18
=9+19
=8+20
=7+21
=6+22
=5+23
=4+24
=3+25
=1+27
12×11=132(c=14のとき)
a=1,2,3,4,5,6のときc=14があり、
a=7,8のときc=14はない。
a+b+c=7+10+11
=7+9+12
=7+8+13
=8+9+11
a,b,c,d,eの組み合わせは、
132×6+120(11+10+8+6+5+3+3+1)=12×(66+470)
=12×536
=6432(組)

916 名前:132人目の素数さん [2020/06/14(日) 15:11:45.61 ID:7za9QMfv.net]
lim[x→+0](1-1/2x^3)/(1+x+x^2)
どなたかご教授頂けませんでしょうか

917 名前:132人目の素数さん mailto:sage [2020/06/14(日) 15:27:07.09 ID:xVOqdUfa.net]
それはさすがに丸投げすぎだろ

918 名前:132人目の素数さん [2020/06/14(日) 15:27:44.19 ID:2mGrVvSG.net]
数学掲示板群 ttp://x0000.net/forum.aspx?id=1

学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net
数学 物理学 化学 生物学 天文学 地理地学
IT 電子 工学 言語学 国語 方言 など

PS 連続と離散を統一した!
ttp://x0000.net/topic.aspx?id=3709-0
微分幾何学入門
ttp://x0000.net/topic.aspx?id=3694-0

919 名前:132人目の素数さん mailto:sage [2020/06/14(日) 15:35:25.77 ID:xVOqdUfa.net]
上手い式変形が思いつかなくても、
近い値を代入していったら極限がどうなるか大体予想がつくじゃん?
予想がついたら、極限が予想通りになるような式変形を考えればいいじゃん?

920 名前:132人目の素数さん [2020/06/14(日) 15:49:33.98 ID:7za9QMfv.net]
自分がわからないところは、この問題が
1/x^3=ー∞ (x→+0)
を使わないと解けないのかというところです。
こういったやり方は習っていないので正攻法でないように感じられるため、
とても違和感があります。
(具体的な値をどんどん小さくして代入していくとそうなることはいちおう理解はできます)



921 名前:132人目の素数さん mailto:sage [2020/06/14(日) 15:53:32.68 ID:xVOqdUfa.net]
>>885
>こういったやり方は習っていない

本当に?
極限が不定形のときとそうでないときでどう変わるか習っているはずだが
例えば、
1/x^3 (x→+0)
について言えば、(分子)→0でない定数、(分母)→+0 でしょ?
教科書に載っているんじゃないの?

922 名前:132人目の素数さん [2020/06/14(日) 16:21:06.87 ID:7za9QMfv.net]
ありました。
ありがとうございます。

923 名前:132人目の素数さん [2020/06/14(日) 17:09:18.94 ID:OLfhSsEP.net]
馬鹿

924 名前:イナ mailto:sage [2020/06/14(日) 20:29:10.67 ID:g0bjpO19.net]
>>880
>>748
n=6,7,8,9のとき、
a,b,c,d,eの組み合わせは、
-8n^3+186n^2-1378n+3336
21個の未知数で20次方程式を立てて解くと、
nの20次式が決まると思う。

925 名前:132人目の素数さん [2020/06/14(日) 21:12:17.42 ID:7za9QMfv.net]
get.secret.jp/pt/file/1592136653.jpeg
こちらの2行目から3行目への変形のしくみを教えていただきたい

926 名前:イナ mailto:sage [2020/06/14(日) 21:28:31.03 ID:g0bjpO19.net]
>>889数え間違いがなければこれで解けるはず。
>>748
n=6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26に対するa,b,c,d,eの組み合わせCは、
C=36,60,120,168,288,396,576,624,900,1188,1512,1860,2268,2580,3168,
3612,4320,4824,5740,6432,7392である。

927 名前:132人目の素数さん mailto:sage [2020/06/14(日) 21:38:09.80 ID:wZSdh9we.net]
>>890
合ってんの?それ

928 名前:132人目の素数さん mailto:sage [2020/06/14(日) 21:45:55 ID:YimvzzR1.net]
1つ目の因子だけnをn+1に置き換えたんだろうけど……なんだこれ
2行目からそのまま4行目でよくね

929 名前:132人目の素数さん mailto:sage [2020/06/14(日) 21:56:08 ID:wZSdh9we.net]
n=1とか代入すると計算合わなくない?

930 名前:132人目の素数さん mailto:sage [2020/06/14(日) 22:05:32.62 ID:xVOqdUfa.net]
なぜ書いた人に聞かないのか
式変形は間違っているが、好意的に解釈すれば、極限を積で分けたかったんだろう
lim[n→∞] (1 - (1/n))^n
において n = k+1 とでもしたんだろうな



931 名前:132人目の素数さん [2020/06/14(日) 22:10:21.68 ID:OLfhSsEP.net]
>>894
アホ

932 名前:132人目の素数さん [2020/06/14(日) 22:37:54.63 ID:P68pgERa.net]
エスパーによれば(1)は lim[n->∞](1-1/(n+1))^n = 1/e を示せ
lim[n->∞](1-1/(n+1))^n = lim[n->∞](1-1/n)^(n-1) としてから(2)で使わないとダメだな

933 名前:132人目の素数さん mailto:sage [2020/06/14(日) 23:24:04.97 ID:MHgbHDAz.net]
>>895
バカは黙れよ

934 名前:132人目の素数さん mailto:sage [2020/06/14(日) 23:49:18 ID:xVOqdUfa.net]
>>897
途中で極限を分けておけば lim[n→∞] (1 - (1/n))^n でも問題はないけどね
n = k+1 とすれば n→∞ のとき k→∞ だから、
lim[n→∞] (1 - (1/n))^n = lim[k→∞] (1 - (1/(k+1)))^k (1 - (1/(k+1)))
= lim[k→∞] (1 - (1/(k+1)))^k lim[k→∞] (1 - (1/(k+1)))

935 名前:132人目の素数さん mailto:sage [2020/06/15(月) 00:02:03 ID:4JwjNlDU.net]
わざわざkで置き換えるバカ

936 名前:132人目の素数さん mailto:sage [2020/06/15(月) 01:14:12.94 ID:8/3XeKQu.net]
>>857
方程式を解く過程は、必要条件として未知数の値を求める過程が第一段。
今の問題でいえば、xとyはどういう値でなければならないか、を追及。
a^2+b^2>0 の下で x=(2a+3b)/(a^2+b^2)、y=(3a-2b)/(a^2+b^2)  が求まる。
逆に、このx、yが元の方程式を満たすことを確認するのが第二段。
以上で終わり。

従って、a が 0 でない場合は、或いは 0 の場合は、などと場合分けをする必要などないことになる。

937 名前:132人目の素数さん [2020/06/15(月) 01:21:48.70 ID:uf4CnNEG.net]
>>857
同値で無くなるから何?

938 名前:132人目の素数さん mailto:sage [2020/06/15(月) 06:34:00.49 ID:6aBjdghm.net]
>>902
旺文社やネットの解答はすべて
>>857
の解答で、これって正解なのかな?って思って
>>901
この解答なら大丈夫ですね
でも誰

939 名前:もそんな解答してない…
私が考えすぎなのかなぁ
[]
[ここ壊れてます]

940 名前:132人目の素数さん mailto:sage [2020/06/15(月) 06:35:41.24 ID:vIALPv+A.net]
>>902
>>901でリーマンさんの意見が出てから>>857を叩くバカwww



941 名前:132人目の素数さん mailto:sage [2020/06/15(月) 06:45:07.98 ID:vIALPv+A.net]
>>903
k-kyogoku2.com/cn105/cn14/pg51.html

ここでは
ab≠0
で求めた後で
ab=0
はこれに含まれるみたいな解答してるな

942 名前:132人目の素数さん [2020/06/15(月) 07:01:06.50 ID:43IXJyq4.net]
>>903
東進の解答はb=0とb≠0で場合分けしてるぞ

943 名前:132人目の素数さん mailto:sage [2020/06/15(月) 07:28:32.75 ID:jrIjfccZ.net]
>>890
https://i.imgur.com/80YUQMy.jpg

944 名前:132人目の素数さん [2020/06/15(月) 07:58:33.31 ID:uf4CnNEG.net]
>>904
初めて三田のでね

945 名前:132人目の素数さん mailto:sage [2020/06/15(月) 11:27:50.14 ID:fl7TyCxt.net]
>>903
元の式を消したと思うから同値でなくなるのだ
元の式に追加したと思えば同値だ

946 名前:132人目の素数さん mailto:sage [2020/06/15(月) 11:47:27.13 ID:m4MzqaBi.net]
>>890
(1 -1/nn)^n
= (1 -1/n)^n・(1 +1/n)^n
= {(n-1)/n}^(n-1/2)・√{(n-1)/n}・√{n/(n+1)}・(1 +1/n)^(n+1/2)
= 1/{1 +1/(n-1)}^(n-1/2)・√{(n-1)/(n+1)}・(1 +1/n)^(n+1/2)
= (1/e)・√{(n-1)/(n+1)}・e
= √{(n-1)/(n+1)}.

ここで (1 + 1/n)^(n+1/2) = e (n>>1)を使った。

947 名前:132人目の素数さん mailto:sage [2020/06/15(月) 12:03:52.95 ID:m4MzqaBi.net]
>>890
2項公式を使うのもアリか?

(1 - 1/nn)^n = 1 - C(n,1)/n^2 + C(n,2)/n^4 - C(n,3)/n^6 + ・・・
 = 1 - 1/n + (n-1)/(2n^3) - (n-1)(n-2)/(6n^5) + ・・・・
 ≒ 1 - 1/n

948 名前:132人目の素数さん mailto:sage [2020/06/15(月) 15:49:47.63 ID:wNmhd7XJ.net]
グロタンディークとドリーニュどっちが天才? 

949 名前:132人目の素数さん mailto:sage [2020/06/15(月) 17:32:04.19 ID:m4MzqaBi.net]
>>910
実は・・・
 (1 +1/n)^(n+1/2) = e{1 +1/(12n^2) -1/(12n^3) +113/(1440n^4) -53/(720n^5) + ・・・・}
なので
 1/{1 +1/(n-1)}^(n-1/2)・(1 +1/n)^(n+1/2) = 1 - 1/(6n^3) -2/(15n^5) + ・・・・ ≒ 1

また、
 √{(n-1)/(n+1)} = 1 -1/n +1/(2n^2) -1/(2n^3) + ・・・・

>>911
 (1 -1/nn)^n = 1 -1/n +1/(2n^2) -2/(3n^3) + ・・・・

950 名前:132人目の素数さん [2020/06/15(月) 22:25:51.17 ID:z2kteJ8N.net]
2の2021乗 を2021で割ったときの余り

プチフェルマーとか使わずに高校生でもわかるように求められますか



951 名前:132人目の素数さん mailto:sage [2020/06/16(火) 01:33:27.96 ID:vq+fSYnv.net]
>>914
べき乗を特定の数で割った余りはループするから、高校生でも計算できる
簡単のため、「 a を n で割った余りと b を n で割った余りが等しい」ことを
a ≡ b (mod n) と書く
地道に計算して周期を求めれば良い
(ただし、 a ≡ b (mod n) のとき、ac ≡ bc (mod n) が成り立つことは証明する必要がある)
…と思ったが意外と面倒そうだったので、少しだけ工夫して計算することを考える

2^11 = 2048 ≡ 27 (mod 2021) より、
2^2021 = 2^(11*183 + 8) = ((2^11)^183) * 2^8 ≡ (27^183) * 256 (mod 2021)
となるので、27^183 (mod 2021) を求めれば良い
27^2 = 729, 27^3 = 19683 ≡ 1494 (mod 2021) より、
27^183 = 27^(3*61) ≡ 1494^61 (mod 2021)
となるので、 1494^61 (mod 2021) を求めれば良い
1494^2 = 2232036 ≡ 852 (mod 2021) より、
1494^61 = 1494^(2*30 + 1) ≡ (852^30) * 1494 (mod 2021)
となるので、 852^30 (mod 2021) を求めれば良い
852^2 = 725904 ≡ 365 (mod 2021) より、
852^30 = 852^(2*15) ≡ 365^15 (mod 2021)
となるので、 365^15 (mod 2021) を求めれば良い
365^2 = 133225 ≡ 1860 (mod 2021) より、
365^15 = 365^(2*7 + 1) ≡ (1860^7) * 365 (mod 2021)
となるので、 1860^7 (mod 2021) を求めれば良い
1860 ≡ -161 (mod 2021) より、 1860^2 ≡ (-161)^2 = 25921 ≡ 1669 (mod 2021) だから、
1860^7 ≡ (1669^3) * (-161) (mod 2021)
となるので、 1669^3 (mod 2021) を求めれば良い
1669 ≡ -352 (mod 2021) より、
1669^3 ≡ (-352)^3 ≡ -43614208 ≡ -1028 (mod 2021)

以上より、
2^2021 ≡ (27^183) * 256
≡ (1494^61) * 256
≡ (852^30) * 1494 * 256
≡ (365^15) * 1494 * 256
≡ (1860^7) * 365 * 1494 * 256
≡ (1669^3) * (-161) * 365 * 1494 * 256
≡ (-1028) * (-161) * 365 * 1494 * 256
≡ 1028 * (161 * 365) * 1494 * 256
≡ (1028 * 156

952 名前:) * 1494 * 256
≡ (709 * 1494) * 256
≡ 242 * 256
≡ 1322 (mod 2021)

…もっと楽なやり方ないですかね?
[]
[ここ壊れてます]

953 名前:132人目の素数さん mailto:sage [2020/06/16(火) 02:13:44.96 ID:UJyDgoVK.net]
2021だから自作問題じゃないの?

954 名前:132人目の素数さん mailto:sage [2020/06/16(火) 05:20:32.77 ID:k4bpMl6T.net]
>>915
2021の素因数分解が43×47だから、オイラーの定理より
2^(42×46)≡1 (mod 2021)
よって
2^2021 ≡ 2^(2021-42×46)
≡ 2^89
≡ (2^11)^8×2
≡ 2048^8×2
≡ 27^8×2
≡ 729^4×2
≡ 1939^2×2
≡ 661×2
≡ 1322 (mod 2021)

955 名前:132人目の素数さん mailto:sage [2020/06/16(火) 05:31:15 ID:k4bpMl6T.net]
あー、「プチフェルマー」ってフェルマーの小定理かw
逆にフェルマーの小定理やらオイラーの定理を高校生に教えたほうが早くないか?

956 名前:132人目の素数さん mailto:sage [2020/06/16(火) 11:06:16.10 ID:vq+fSYnv.net]
だよね
オイラーの定理が使えれば簡単なんだけど

957 名前:132人目の素数さん mailto:sage [2020/06/16(火) 11:21:04.77 ID:4svmpCM1.net]
A=a+√((a+b)(a+c))
B=b+√((b+c)(b+a))
C=c+√((c+a)(c+b))
とする

(ab+bc+ca)(A+B+C)=ABCを示せ

展開すれば確かにそうなるんですが、他に良い説明あれば教えてください

958 名前:132人目の素数さん mailto:sage [2020/06/16(火) 11:32:01.16 ID:NKepjGgb.net]
小フェルマー、ロピタル、オイラー

959 名前:132人目の素数さん mailto:sage [2020/06/16(火) 11:57:25.83 ID:uFFzB7Te.net]
>>905
>>906

ありがとうございました
なんかスッキリしました

960 名前:132人目の素数さん mailto:sage [2020/06/16(火) 13:56:24.02 ID:rc3PpW1A.net]
https://i.imgur.com/5qKSaA7.jpg
分からないです。お願いします。



961 名前:132人目の素数さん mailto:sage [2020/06/16(火) 14:01:26.82 ID:foe4qSxU.net]
わからないんですね

962 名前:132人目の素数さん mailto:sage [2020/06/16(火) 14:09:06 ID:T/wURWnf.net]
だんだんレベル下がってねえか?

963 名前:132人目の素数さん mailto:sage [2020/06/16(火) 14:18:31.52 ID:4svmpCM1.net]
>>920
他スレにて解決しました

964 名前:132人目の素数さん mailto:sage [2020/06/16(火) 16:21:41.67 ID:TayWrcS7.net]
>>923
丸投げ&スレ違い
お前いつも図々しいな

どうせイナが解くんだろうけどw

965 名前:132人目の素数さん mailto:sage [2020/06/16(火) 18:43:23 ID:1I3hy0IR.net]
πとeを足すと無理数になる事の証明ってなんでできないんですか?
そもそも無理数と無理数足して有理数のなることなんてあるんですか

966 名前:132人目の素数さん mailto:sage [2020/06/16(火) 18:49:19 ID:vq+fSYnv.net]
(1 + √2) + (1 - √2)

967 名前:132人目の素数さん mailto:sage [2020/06/16(火) 19:06:24 ID:hKoNkwWV.net]
足し算どころか無理数の無理数乗が有理数になることもあるというのに

968 名前:132人目の素数さん [2020/06/16(火) 19:14:14 ID:DcO1j8Ha.net]
無理数の虚数乗が整数になることもあるというのに

969 名前:132人目の素数さん mailto:sage [2020/06/16(火) 19:55:26.74 ID:NKepjGgb.net]
e^(i*θ)=exp(i*θ)=cosθ+i*sinθ
特に
e^(i*π)=-1⇔e^(i*π)+1=0
数学五大定数が邂逅する公式

970 名前:132人目の素数さん mailto:sage [2020/06/16(火) 20:38:37.01 ID:MA7a0AZ4.net]
小フェルマーなしで

2^7 = 128 = 3・43 -1 ≡ -1  (mod 43)
2^14 = (2^7)(2^7) ≡ (-1)(-1) = 1 (mod 43)

2^9 = 512 = 47・11 -5 ≡ -5  (mod 47)
2^19 = 2(2^9)(2^9) ≡ 2(-5)(-5) = 50 ≡ 3 (mod 47)
2^23 = (2^4)(2^19) ≡ 16・3 = 48 ≡ 1  (mod 47)

N = 2^(14・23) -1 とおくと
43 | (2^14 -1) | N
47 | (2^23 - 1) | N
43・47 | N
2^(14・23) ≡ 1  (mod 43・47)



971 名前:132人目の素数さん mailto:sage [2020/06/16(火) 21:28:40.35 ID:vq+fSYnv.net]
>>933
へえ、原始根じゃないのか
より一般に、オイラーの定理を使わなくても
a と n = pq ( p, q は互いに素、素数でなくてもよい)が互いに素ならば、
a^m ≡ 1 (mod p)
a^k ≡ 1 (mod q)
となる m, k に対して、
a^mk ≡ 1 (mod n)
が言えるね

972 名前:132人目の素数さん mailto:sage [2020/06/17(水) 10:53:39.52 ID:/OWl0Yar.net]
>>923
この問題は簡単過ぎて興味ないけど
こんな図形を正確に描きたい時はどんなアプリを使えばいいの?

973 名前:132人目の素数さん mailto:sage [2020/06/17(水) 11:29:34.39 ID:MPg+i344.net]
>>935
>>4

974 名前:132人目の素数さん mailto:sage [2020/06/17(水) 18:29:44.83 ID:tGGQ0+s4.net]
>>912に回答願います

975 名前:132人目の素数さん mailto:sage [2020/06/17(水) 19:42:46.65 ID:jU+nQbRs.net]
>>937
両方

976 名前:132人目の素数さん mailto:sage [2020/06/17(水) 22:26:16.09 ID:tGGQ0+s4.net]
>>938
理由が知りたいです

977 名前:132人目の素数さん mailto:sage [2020/06/17(水) 23:17:03.93 ID:XXrJF5Yl.net]
どっちが天才かという質問に意味あるの?
比較できるものなの?

978 名前:132人目の素数さん mailto:sage [2020/06/17(水) 23:22:46.60 ID:tGGQ0+s4.net]
>>940
同じ数学者なので比較できると思います

979 名前:132人目の素数さん mailto:sage [2020/06/17(水) 23:55:23.52 ID:mV1XU9fr.net]
>>941
そもそも、天才かどうかとかが数値化出来る(または順序がつけられる)と思うこと自体が妄想の類。

出来ると思うなら、あなたの基準を示せば?

980 名前:132人目の素数さん mailto:sage [2020/06/17(水) 23:59:18.27 ID:sSjqSxfR.net]
イタコに呼び寄せてもらって1年間のIF競わせれば



981 名前:132人目の素数さん mailto:sage [2020/06/18(木) 00:48:05.01 ID:G8tIqtVV.net]
何らかの基底成分に射影すれば比較できるかもね

982 名前:132人目の素数さん mailto:sage [2020/06/18(木) 00:49:21.68 ID:/KxUQwGU.net]
天才を話題にすれば偉くなった気がするんだな

983 名前:132人目の素数さん [2020/06/18(木) 01:16:45.13 ID:+eD6AEfH.net]
自己投影するからね
正射影でもないのに

984 名前:イナ mailto:sage [2020/06/18(木) 01:24:07.62 ID:TB2iTi93.net]
>>891
>>923
OA'=√(OA^2+AA'^2)
=√2=OB
OB'=√(OB^2+BB'^2)
=√(2+1)
=√3=OC
OC'=√(OC^2+CC'^2)
=√(3+1)
=2=OD
OD'=√(OD^2+DD'^2)
=√(2^2+1^2)
=√5=OE
∴CE=OE-OC
=√5-√3……(3)

985 名前:132人目の素数さん mailto:sage [2020/06/18(木) 02:29:03.73 ID:vi8E1/wR.net]
趣旨が違うんですが質問スレが見当たらないのでここで質問させてください
マインスイーパーでこうなった時の確率論がわかりません
https://i.imgur.com/Cfm9O6V.jpg
https://i.imgur.com/GkCKYvA.jpg
上のように未開のマスにABCDEを当てると爆弾があるマスは
AD、BD、CEの三択に絞られます
この時確率は等確率で全て1/3なのでしょうか?
そしたらDに爆弾がある確率が2/3となるのでEをあけます
それともADとBDが1/4でCEが1/2なのでしょうか?
そしたらAかBはたった1/4なのでどちらかをあけたいです
場合分けを示してもらえたらありがたいです

986 名前:132人目の素数さん mailto:sage [2020/06/18(木) 08:05:30.60 ID:xuyqQeiy.net]
>>948
その時点で空けていないマスの数と残りの爆弾の数によるんじゃないのかな?
空けていないのはその画像にあるだけの11?
残りの爆弾の数はいくつなの?

987 名前:132人目の素数さん mailto:sage [2020/06/18(木) 08:27:48.61 ID:xuyqQeiy.net]
>>948
すまん
上で書いた条件はこの場合関係が無かった
ABCDEのうちに2個爆弾があることが確定しているのでそれらは等確率で合ってると思う

988 名前:132人目の素数さん mailto:sage [2020/06/18(木) 08:34:43.29 ID:xuyqQeiy.net]
>>948
さらにもうしわけない>>950に書いた理由がおかしかった
「『ABCのうち1個だけ爆弾』が確定していて、『2の下の???のうち1個だけ爆弾』も確定しているから」だった

989 名前:132人目の素数さん mailto:sage [2020/06/18(Thu) 13:22:20 ID:QdYygQI4.net]
>>948
高校数学スレなので、高校数学っぽい返答も書いておく。

高校数学でいう「試行」とは何度も繰り返し行えることのことをいう。
マインスイーパで「まだ開けてないマスを開けて爆弾かどうかを確認する」ことは1度しかできないからこれは試行ではない。
試行でない以上、確率は定義できない。
>マインスイーパーでこうなった時の確率論がわかりません
この質問に対しては、これは確率論ではないという答えになるだろう。

要するに何が言いたいのかというと、根源事象を提示しろということ。それによって答えが変わる。

990 名前:132人目の素数さん mailto:sage [2020/06/18(Thu) 13:27:26 ID:NfSGP ]
[ここ壊れてます]



991 名前:yx8.net mailto: 何が同様に確からしいかわからんからな
ステージ決定のアルゴリズムがわならないと確率なんてわかるはずがない
ステージは事前に用意されててその形は一通りしかないとなればそもそも答えが確定してるわけだし
[]
[ここ壊れてます]

992 名前:132人目の素数さん mailto:sage [2020/06/18(Thu) 13:29:05 ID:NfSGPyx8.net]
前提条件があいまいで確率が計算できないものを計算できるはずと考える誤謬はよくあるんだ

993 名前:132人目の素数さん [2020/06/18(木) 13:41:37.78 ID:+eD6AEfH.net]
>>952
>高校数学でいう「試行」とは何度も繰り返し行えることのことをいう。
>マインスイーパで「まだ開けてないマスを開けて爆弾かどうかを確認する」ことは1度しかできないからこれは試行ではない。
>試行でない以上、確率は定義できない。
自信満々だなw

994 名前:132人目の素数さん [2020/06/18(木) 13:43:49.90 ID:+eD6AEfH.net]
サイコロを振って1の目が出たら殺される
1回しかできないから試行じゃないし確率は定義されない
かw

995 名前:132人目の素数さん [2020/06/18(木) 13:45:15.34 ID:+eD6AEfH.net]
サイコロを何万回振ってもいいが
出る目に偏りがあるかないか不明
確率は定義されない


996 名前:132人目の素数さん mailto:sage [2020/06/18(木) 13:52:03.33 ID:NfSGPyx8.net]
不明なら定義されないぞ
問題文にサイコロという言葉が出た時点で各目の出る確率は同様に確からしいという前提

997 名前:132人目の素数さん mailto:sage [2020/06/18(木) 13:53:10.07 ID:NfSGPyx8.net]
あるいは、明日地震が起こる確率は起こるか起こらないかだから50%みたいな話を認めるかだ

998 名前:132人目の素数さん [2020/06/18(木) 13:56:42.86 ID:+eD6AEfH.net]
>>958
1回しか振れないさいころと
1回しか開けられないマス

999 名前:132人目の素数さん mailto:sage [2020/06/18(木) 13:56:49.56 ID:m1uQUGAh.net]
>>957
アホな高校生が頑張ってレスすんな
お前らは理解するために必要な公理(必要な前提)を学んでいない
数学ではなく経験論でやってるんだ
論理思考ができると思い上がるな

1000 名前:132人目の素数さん [2020/06/18(木) 13:58:56.52 ID:+eD6AEfH.net]
サイコロに目の偏りのない前提を許すなら
地雷の偏りのないマインスイーパも許せよ



1001 名前:132人目の素数さん mailto:sage [2020/06/18(木) 13:59:15.34 ID:NfSGPyx8.net]
>>960
ベルトランのパラドックスも知らなそう
知ってるならちゃんと説明どうぞ?

1002 名前:132人目の素数さん [2020/06/18(木) 13:59:15.92 ID:+eD6AEfH.net]
>>961
バカヨナw

1003 名前:132人目の素数さん [2020/06/18(木) 14:00:01.46 ID:+eD6AEfH.net]
>>959

それはまた別の話だ

1004 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:01:11.74 ID:d7Tj4ZAv.net]
アホな高校生並の知能を煽るな荒らしに変容する
スルーするしかないよこの手の奴は

1005 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:03:15.26 ID:NfSGPyx8.net]
>>966
みたいだな
許すとかなんとか言ってるが、どこに許すかで話変わることも分かってない馬鹿だったわ

1006 名前:132人目の素数さん [2020/06/18(木) 14:03:49.85 ID:+eD6AEfH.net]
マインスイーパの場合は
マス目の数と地雷の数によって
均等(という仮定を許せよ)に散らばっている地雷のある確率が決まるのだよ
両方とも公開されている前提でな

1007 名前:132人目の素数さん [2020/06/18(木) 14:05:17.59 ID:+eD6AEfH.net]
兎にも角にもこれには噴飯
>>952
>マインスイーパで「まだ開けてないマスを開けて爆弾かどうかを確認する」ことは1度しかできないからこれは試行ではない。

1008 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:06:21.67 ID:fEkbM7qW.net]
勝手に前提作ればいつでも自分が正しくなれるよな
やるなら考えられる前提全て提示してそれごとに解答どうぞ

1009 名前:132人目の素数さん [2020/06/18(木) 14:07:25.88 ID:+eD6AEfH.net]
マインスイーパがどういうゲームで
質問者が何を知りたいかを考えれば
妥当な仮定が何かは分かろうよ

1010 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:07:59.72 ID:fEkbM7qW.net]
>>969
互いに確からしいものが分からない場合に経験論的にやるのは次善の策だが
勝手に前提作るのは噴飯だが、試行できないというのはよくやる考え方



1011 名前:132人目の素数さん [2020/06/18(木) 14:08:38.78 ID:+eD6AEfH.net]
>>958
不明だからこそ同様に確からしいという仮定を付けるわけ

1012 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:12:13.31 ID:fEkbM7qW.net]
>>973
確からしいという根拠もないしおそらく確からしくないものになんでそんな仮定つけちゃったんだ
それこそ明日地震が起きる確率50%じゃないか
マインスイーパーで各マスの確率からステージ決めるアルゴリズムでまともなゲームになるか?それクソゲーだよ

1013 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:19:37.89 ID:NfSGPyx8.net]
>>971
打倒な仮定か
事前にゲームになりそうステージをいくつも設定してそれらを同様に確からしいとするのがいいか

1014 名前:
これへの答えは出ないな
[]
[ここ壊れてます]

1015 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:40:55.22 ID:Z9N+vfCT.net]
>>971
> マインスイーパがどういうゲームで
> 妥当な仮定が何かは分かろうよ

は板違い、該当ゲーム板で聞け、となるし

> 質問者が何を知りたいかを考えれば
> 妥当な仮定が何かは分かろうよ

も板違い、察してちゃんは該当カウンセリング受けて来い、となる

1016 名前:132人目の素数さん mailto:sage [2020/06/18(木) 14:50:18.35 ID:/KxUQwGU.net]
地雷の質問が地雷

1017 名前:132人目の素数さん mailto:sage [2020/06/18(木) 18:37:51.61 ID:xuyqQeiy.net]
マスの数、爆弾の数は指定されているんだろ?
そうするとその数のマスに対する爆弾の配置の場合の数は確定するだろう
そしてそれぞれ等確率で起きるという前提で確率を考えることは出来る
すでにいろいろ開けた状態から考えるなら条件付き確率ってことになる

1018 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:08:34.80 ID:Y+Ytti/+.net]
わかってねぇなぁ
根元事象が何かもわからないのに見た目の印象で確率計算できるとかいう勘違いするのは本質的に何もわかってない
練習して計算は出来るようになったのかもしれないけど理解が何も伴ってない

1019 名前:132人目の素数さん [2020/06/18(木) 19:32:07.54 ID:+eD6AEfH.net]
>>979
ダメだねw

1020 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:34:08.71 ID:FSZIBmY1.net]
そもそもこの質問の形になるのは何通りあるんだろう
そのうちそれぞれ何通りあるんだろう
とか考えだしたらまず何が同様に確からしいんだろうかという疑問が湧く
そういう疑問がわかない時点で確率を何も知らないことが分かる
馬鹿なんだよ



1021 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:34:26.37 ID:Qct2qkTW.net]
グロタンディークとアインシュタインどっちが天才ですか?

1022 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:37:59.00 ID:FSZIBmY1.net]
>>980
貴方はレスバではなく数学を考えるべき
間違えてるのは貴方
あるいは何が同様に確からしいかという定義を与えるべき
もともと白紙の問題で地雷が特定個数埋め込まれた状態でどのような盤面がどういう確率で現れるかから考えないと駄目なんだよ

1023 名前:132人目の素数さん [2020/06/18(木) 19:44:40.87 ID:+eD6AEfH.net]
>>983
すでに書いているように
偏りのないサイコロを受け入れるなら
偏りのない地雷の配置を受け入れなくちゃね

1024 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:49:05.70 ID:FSZIBmY1.net]
>>984
あなたがそのような信仰をするのは勝手だけどゲームデザイン的に完全ランダムは変なステージが起きるから普通やらないよ
それでも分からないから等確率と考えるならあなた個人の信仰

1025 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:51:33.54 ID:FSZIBmY1.net]
そもそも等確率だからといって、この盤面になったときの残りのマスの確率が等確率は議論しなきゃならない
その議論すらしてないよね

1026 名前:132人目の素数さん [2020/06/18(木) 19:53:13.57 ID:+eD6AEfH.net]
>>981
あのね
2×3にいくつかあってあとの爆弾の配置がこれと同じ初期配置は
2×3にいくつかあるその配置それぞれについて同じ個数だけあるわけ
そしてこの配置にいたるまでどんな経過を辿るにせよそれは
この2×3の配置のそれぞれについて同様に確からしいわけね
つまりどんな経過を辿るにせよ2×3の配置はどれも同様に確からしく起こるってこと
あとは分かるな

1027 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:56:41.65 ID:FSZIBmY1.net]
いや何もわからないけど、それ貴方の信仰を前提にしてるでしょう
科学は事実から学び取るものであって、事実より自分の考えた正しさを根拠にするようになったらそれは宗教

1028 名前:132人目の素数さん mailto:sage [2020/06/18(木) 19:58:55.71 ID:0q7NEZvW.net]
宗教家を正そうとしても無駄だからやめとけ
本人は正しいと思ってんだよ
宗教にはまった家族ですら救うのは難しいのにこんな掲示板じゃね

1029 名前:132人目の素数さん mailto:sage [2020/06/18(木) 20:19:21.74 ID:zadFZQLc.net]
同様に確からしいなら同様に確からしいんだから質問の意味がなくね

1030 名前:132人目の素数さん mailto:sage [2020/06/18(木) 20:19:47.81 ID:Qct2qkTW.net]
>>982に回答願います



1031 名前:132人目の素数さん mailto:sage [2020/06/18(木) 20:43:58.13 ID:xuyqQeiy.net]
何を同様に確からしいとするのかの問題なんじゃ?

1032 名前:132人目の素数さん mailto:sage [2020/06/18(木) 21:12:44.11 ID:pHrH0ZLL.net]
ベルトランの逆説 - Wikipedia
https://ja.m.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%88%E3%83%A9%E3%83%B3%E3%81%AE%E9%80%86%E8%AA%AC

1033 名前:132人目の素数さん mailto:sage [2020/06/18(木) 21:22:36.49 ID:Qct2qkTW.net]
>>982に誰か答えてください

1034 名前:132人目の素数さん mailto:sage [2020/06/18(木) 21:37:04.09 ID:kh2VEepE.net]
>>994
939

1035 名前:132人目の素数さん mailto:sage [2020/06/18(木) 21:52:44.01 ID:nLJIe0OU.net]
NGID:
+eD6AEfH
Qct2qkTW

1036 名前:132人目の素数さん [2020/06/18(木) 22:43:15.08 ID:DeA9tF2T.net]
無視してたら飽きて消える馬鹿だからかまうなよ

1037 名前:132人目の素数さん mailto:sage [2020/06/18(木) 22:57:18.62 ID:Qct2qkTW.net]
数学者で打線組んでください

1038 名前:132人目の素数さん [2020/06/18(木) 23:44:08.81 ID:+eD6AEfH.net]
>>997
アホかw
すべて言い尽くしたから
あとは君が理解するだけ

1039 名前:132人目の素数さん mailto:sage [2020/06/19(金) 00:03:00.24 ID:LXFRwsRT.net]
マインスイーパー馬鹿は金輪際、数学板に来るな
もし来るなら来る前に鼻の穴両方と唇に接着剤を塗って確り塞いでからにしろ

1040 名前:132人目の素数さん mailto:sage [2020/06/19(金) 00:05:35.72 ID:LXFRwsRT.net]
瞬間接着剤でやんなよ、冗談抜きで死ぬから

高校の時に自分より強い相手に偶然勝った時にやった事がある



1041 名前:132人目の素数さん [2020/06/19(金) 00:11:10.81 ID:JnabiI6c.net]
>>999
ん?おまえの文章はもともと読んでないが。

1042 名前:132人目の素数さん mailto:sage [2020/06/19(金) 00:40:49.77 ID:DpViM1rX.net]
1000

1043 名前:1001 [Over 1000 Thread.net]
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 81日 0時間 20分 59秒

1044 名前:過去ログ ★ [[過去ログ]]
■ このスレッドは過去ログ倉庫に格納されています






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<288KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef