- 1 名前:132人目の素数さん mailto:sage [2018/07/28(土) 04:58:13.63 ID:cuNdeNig.net]
- 数学基礎論は、数学の基礎づけを目的として誕生したが
現在では、数理論理学として、証明論、再帰的関数論、 構成的数学、モデル理論、公理的集合論など、 多くの分野 に分かれ、極めて高度な純粋数学として発展を続けています。 (「数学基礎論」という言葉の使い方には、専門家でも 若干の個人差があるようです。) 応用、ないし交流のある分野は、計算機科学の諸分野や、 代数幾何学、英米系哲学の一部などを含み、多岐にわたります。 (数学セミナー98年6月号、「数学基礎論の学び方」 ttp://www.math.tohoku.ac.jp/~tanaka/intro.html 或いは 岩波文庫「不完全性定理」 6.4 数学基礎論の数学化などを参照) 前スレ 数学基礎論・数理論理学 その12 https://rio2016.5ch.net/test/read.cgi/math/1509638068/
- 658 名前:132人目の素数さん mailto:sage [2019/01/18(金) 03:21:55.21 ID:CSqUHsTl.net]
- >>632
ペアノの公理を満たすものであれば何でもいいと言うことですかな。 でも数理論理学以外の数学ってZFCの基に議論が成り立っている(はず?)であり、 ZFCの公理から
- 659 名前:自然数はn+1=n∪{n}として構成されているのだから、
わざわざ同型な他の対象をもってして自然数として考えるというのは不自然だと思います。 [] - [ここ壊れてます]
- 660 名前:132人目の素数さん mailto:sage [2019/01/18(金) 14:19:51.49 ID:SeSoGWBh.net]
- そんなこと言ってると実数に含まれた自然数は自然数でない事になるぞ
- 661 名前:132人目の素数さん mailto:sage [2019/01/18(金) 17:02:03.20 ID:0QBetosB.net]
- 理論内部で定義できないから無問題
- 662 名前:132人目の素数さん [2019/01/18(金) 18:20:17.91 ID:hlzteWqL.net]
- 自然数nの後者がn∪{n}と定義されるのってなんか本質的じゃない気がするんだよね。
nの要素数とnが一致するからってのは何か釈然としない。
- 663 名前:132人目の素数さん mailto:sage [2019/01/18(金) 18:57:18.45 ID:ZS8DsJLe.net]
- そりゃ本質は公理系にあるわけで、具体的な構成方法に本質はないでしょ
- 664 名前:132人目の素数さん [2019/01/18(金) 19:57:22.24 ID:hlzteWqL.net]
- 本質が公理系にあるってどうゆう意味?
ZFCが本質的なのであって構成法は本質的云々言うべきじゃないって事?
- 665 名前:132人目の素数さん mailto:sage [2019/01/18(金) 20:44:32.02 ID:hoYJRZe2.net]
- ペアノ公理系のことでしょ
- 666 名前:132人目の素数さん [2019/01/18(金) 20:56:10.81 ID:hlzteWqL.net]
- ペアノの公理系に本質があるってのならめっちゃ同意だけど実際ペアノの公理系は公理系として扱われてないでしょ
- 667 名前:132人目の素数さん mailto:sage [2019/01/18(金) 21:05:49.26 ID:OFyyBdpX.net]
- 順序対を{{x},{x,y}}と定義することなんか、
性質だけが重要でコーディングの詳細はほとんど どうでもよく非本質的である例の最たるものだけど、 そうは言っても最初に勉強するときは、 実際にはこの特定のコーディングの仕方に 依存して理論を作っていっているようにも 見えるので、ちょっとこういう 「お気持ち」を理解するのは難しいかも。 それに数理論理は分野によっては (特に証明論系の分野では) コーディングに依存しまくった定義や議論をするので コーディングがどこまで本質的かは微妙な問題だよね。
- 668 名前:132人目の素数さん mailto:sage [2019/01/18(金) 21:06:39.20 ID:OFyyBdpX.net]
- 物事を統語論的な面と意味論的な面に分けて考えた時に
統語論的側面にはそういう、意味の分からない煩雑さの 中に捉えどころのない物事の本性が隠れ棲んでいるような ところがある。これを証明論の研究者のvan Dalenは 論理学のesoteric秘教的で神聖な’sacredな’側面であると 比喩的に呼んでいて云々、みたいな話を前したことあるな
- 669 名前:132人目の素数さん mailto:sage [2019/01/18(金) 21:12:13.35 ID:OFyyBdpX.net]
- 圏論のLeinsterが、Rethinking set theory
https://arxiv.org/abs/1212.6543で、 ZFCを基礎とした公理的集合論を批判してて、 まあ個人的に八割がた難癖みたいに聞こえるんだけど、 直観的に実数と実関数は型が違う対象であるはずなのに、 全ての数学的対象を集合とみなして、コーディングを デコードする人のキモチで区別するのっておかしくない? みたいなこと言ってて、まあそれはその通りなのかなあ、 とも思うんだよね。
- 670 名前:132人目の素数さん mailto:sage [2019/01/18(金) 21:22:45.88 ID:Rfh10wmC.net]
- 実数も関数も微分形式もスペクトルも集合な方が分かりやすいし、レンスターには同意できんな
レンスターのベー圏は原著が無料だったから読んで三章以外好きだけどね
- 671 名前:132人目の素数さん [2019/01/18(金) 21:58:50.83 ID:hlzteWqL.net]
- >>642 で俺が言いたい事を完璧に表現してくれた。
コーディングってのは俺の言う構成法の事でしょ。 レンスターはその「お気持ち」を理解した上でzfcを批判してるんだろうけど俺は理解せずに批判しているって事やね。 その「お気持ち」と言うのはさ、申し訳ないがどうにか噛み砕いて教えてもらえないかな。
- 672 名前:132人目の素数さん mailto:sage [2019/01/18(金) 22:05:18.40 ID:Rfh10wmC.net]
- お気持ちなどない
あえて言うなら、ただの記号列でそれを操作するゲーム、と捉えるのが気持ちだろう
- 673 名前:132人目の素数さん [2019/01/18(金) 22:28:25.59 ID:hlzteWqL.net]
- それについては分かってるつもりだよ
642で言われてるお気持ちと言うのが何なのかを知りたいわけ じゃあさ、実数が集合の方が分かりやすいってのは何でそう思うの? 「1」と言う実数が集合であろうがなかろうが数学をする上で困らない様に思うんだけど
- 674 名前:132人目の素数さん mailto:sage [2019/01/18(金) 22:54:18.83 ID:4GllDUvh.net]
- 642で言ってるのは順序対の定義を変えれば他の結果も自明な変更で対処できるから、あえて別の定義を使う理由もないということだと思う
困らないけど分かりやすいじゃん 微分形式もスペクトルも取りかかる際「単に直感から生まれたもの」と捉えるより「直感から生まれた集合」の方が地に足がついてて安心感あるしね
- 675 名前:132人目の素数さん [2019/01/18(金) 23:43:38.54 ID:hlzteWqL.net]
- ん?順序対の定義を変えるとってどうゆう事だ?
要するにzfcさえ真理として認められてれば他に順序対だの実数だのは自明で決まるから新しく公理を認める必要がない的な?
- 676 名前:132人目の素数さん mailto:sage [2019/01/18(金) 23:52:55.10 ID:4GllDUvh.net]
- Wikipediaを見ればわかるが順序対の定義は上のだけではない
どれを使っても別に良いんだが、 直感的な理由で上のを定義として採用してるだけ そうは言っても初学者が最初に勉強するときには、上の定義の形をあえて採用する理由があると捉えてしまいやすい 実際には「順序対の定義は性質が大事で、上の定義は性質を満たすもののうちの一つを何となく選んだだけ」というお気持ちがあることを初学者は気づきにくい ということだろう
- 677 名前:132人目の素数さん [2019/01/18(金) 23:54:04.32 ID:hlzteWqL.net]
- あともう一つzfcを否定する理由があるんけどさ、
グッドスタインの定理ってのがあるらしくてこれはペアノ算術では証明できないけどzfcの上では成り立つらしい。 ペアノ算術は自然数の基本的な本質だけを記述してるけどzfc上での自然数はペアノの公理を満たした上でそれより少し強い性質を持ってるんだよね。 だからzfcを認めると本来自然数が持つべきでない様な性質を持って良い事になっちゃってる様な気がするんだけど。
- 678 名前:132人目の素数さん mailto:sage [2019/01/18(金) 23:58:32.43 ID:OFyyBdpX.net]
- 集合は何か数学的対象の模型を作りたい時の
マテリアルとしては便利なんだけど、 所詮は石膏とか大理石とか粘土みたいなものに過ぎず、 イデア、概念はまた別にある。 そこら辺を区別せず、 万物は石膏でその像を形造る事が出来る、 と言うべきところで 万物は石膏である、みたいな言い方するから 「な訳ないやん」と反論されることになる
- 679 名前:132人目の素数さん mailto:sage [2019/01/19(土) 00:02:31.42 ID:bxBmUoqb.net]
- >>652
自然数については、 そうではなくて寧ろ、本来自然数が持っているはずの 性質でも、ペアノ算術+一階述語論理の公理系から 導けないような種類の性質が存在する、と考える方が 普通だと思うけど。 実際、排中律が正しいならグッドスタインの定理と その否定のどちらかは正しい事になるけど、 否定が成り立っていると考えるべき理由はないよね
- 680 名前:132人目の素数さん [2019/01/19(土) 00:08:32.48 ID:Pl9ydUsa.net]
- wikiの順序対見てきたけど、どの定義もzfcを認めた上での定義だから俺からしたら全部同じに見えるしそういう意味で言えばその「お気持ち」は俺には分かるよ。
さっきの定義で言えばクラトフスキーの定義に入るんだろうけど、別にどれを使っても良いと言うのも分かる。 まあ何と言うか俺は弱い定義とか公理を使って議論した方が良いと思ってるんだよ。 それで本質だけを示した定義か公理ならそれが最も弱いものになるだろうって感じ。 順序対のそう言う定義を考えるなら、 1.二つの要素を取ってきて、順序対を返す様な関数がなくてはならない。 2.任意の順序対には1番目の要素を取り出す関数と2番目の要素を取り出す関数が存在していなければならない。 3.1の引数と2の返値は一致していなければならない。 こんな感じかな。全然厳密ではないけど。 zfc上での順序対じゃなくてこっちを使いたい。
- 681 名前:132人目の素数さん [2019/01/19(土) 00:22:59.67 ID:Pl9ydUsa.net]
- >>654
なるほどね。 つまりAかAの否定のどちらかは
- 682 名前:証明できる様な公理系を使うべきだって感じ?
完全性だっけ? ちなみにグッドスタインの定理はペアノでは証明も反証もできないって事でペアノが排中律に反する事の証明にもなってる。 まあzfcでも何でも完全性の証明はできないらしいけど今の所排中律に反するようなものがzfcから見つかってないらしいからね。 それは俺が>>652で言いたかった事とは明後日の方向の返しではあるんだけどまあ一理あるとは思う。 じゃあ俺が>>652とか>>655で言ってる様な事と完全性は両立できないから完全性を取ろうって事でみんなzfcを認めた上で議論してるのかな。 俺的にはどうせ証明できない様な完全性よりも本質を捉えた定義の方が大事に思えるけど。 [] - [ここ壊れてます]
- 683 名前:132人目の素数さん [2019/01/19(土) 00:36:40.68 ID:Pl9ydUsa.net]
- >>652では俺の言い方が悪かったよ。
本来自然数が持つべきでない様な性質を持って良い事になっちゃってる って言ったけど。 zfcでの順序対がクラフトスキーの定義である様にzfcでの自然数はフォンノイマンによる定義。 だからこの自然数の事をフォンノイマンの自然数と呼ぶ事にする。 で、フォンノイマンの自然数はペアノシステムを満たしてるわけじゃん。 ペアノ算術だけで証明できる事って要するにペアノシステムを満たす自然数全てに共通して成り立つ事だけを証明できるって事だよね。 グッドスタインの定理をペアノで証明も反証もできないってのはフォンノイマンの自然数以外の自然数では成り立たない事もあるって事じゃん。 だから自然数と言っただけではグッドスタインの定理が成り立つとは言い切るべきじゃないと思うんだよ。 任意のペアノシステムで成り立つかって言う命題なら否定はできるわけだしその意味じゃ排中律に反してないし。 だからzfc上ではなくてもっと弱い数理システム上で話を進めた方が良いんじゃないかって思ってる。
- 684 名前:132人目の素数さん mailto:sage [2019/01/19(土) 05:17:34.60 ID:9TwxXMZH.net]
- >だから自然数と言っただけではグッドスタインの定理が成り立つとは言い切るべきじゃないと思うんだよ。
グッドスタインの定理がペアノの公理系で証明も反証もできない以上、 「グッドスタインの定理が成り立つべき」という立場が厳密には正しくないのは その通りだが、じゃあグッドスタインの定理が成り立つ場合と 成り立たない場合を見てみると、成り立たない場合では 自然数の「有限性」について我々が標準的には期待しない性質が 出てきてしまうので、心情的には「グッドスタインの定理が成り立つべき」 という立場に傾いてしまう
- 685 名前:132人目の素数さん mailto:sage [2019/01/19(土) 05:22:35.67 ID:9TwxXMZH.net]
- 詳しく言うと、グッドスタインの定理が成り立たないようなペアノシステムでは、
グッドスタイン数列が停止しない自然数が存在することになる ここでは、そのような自然数を1つ取って n と置く ところで、"具体的に書ける自然数" においてはグッドスタイン数列は 必ず停止するので、グッドスタイン数列が停止しない自然数 n について、 その n は "如何なる具体的に書ける自然数" よりも大きい自然数となる たとえば、100000000<n とか 10000000000000000<n とかが必ず成り立つことになる しかも0の個数はいくら(具体的に)増やしてもやはり "1000…000<n" が成り立つ こうなると、n は無限大やんけと思ってしまうが、 しかしこのようなペアノシステムでは n は無限大ではなく「自然数」である、 ……という、自然数の有限性について我々が標準的には期待しない性質が 出てきてしまうので、心情的には「グッドスタインの定理が成り立つべき」 という立場に傾いてしまう
- 686 名前:132人目の素数さん mailto:sage [2019/01/19(土) 10:14:16.26 ID:kb0p2d2H.net]
- そういうのに拘らない数学者はZFC上で、グッドスタインが成り立ってて何も困ることはないのが事実
よくは知らないけど逆数学なんかは平均値の定理みたいな普通の定理をどれだけ弱い算術で示せるかみたいなのを研究してたはずだから、そっちが向いてるんじゃね
- 687 名前:132人目の素数さん mailto:sage [2019/01/19(土) 11:04:34.39 ID:bxBmUoqb.net]
- >>656
グッドスタインの定理がどうとかいう話がしたいなら まず不完全性定理がどういう定理かという事を きちんと理解すべき。その後の話。
- 688 名前:132人目の素数さん [2019/01/19(土) 11:34:04.58 ID:lOkK/jxU.net]
- >>659
aが停止する自然数ならa+1も停止するってことが証明できないということ?不思議ね
- 689 名前:132人目の素数さん mailto:sage [2019/01/19(土) 12:09:32.87 ID:9TwxXMZH.net]
- >>662
aが停止することを仮定した上で、 ペアノの公理系の範囲内でa+1も停止することが証明できてしまったら、 それはただの数学的帰納法であって、ペアノの公理系の中で グッドスタインの定理が証明できたことになるので、 証明も反証もできないことに矛盾する …と考えると、別に不思議ではないような
- 690 名前:132人目の素数さん [2019/01/19(土) 12:15:55.05 ID:Pl9ydUsa.net]
- >>659
詳しい事は分からないけどペアノで本来自然数が持ってるべき性質をペアノの公理じゃ
- 691 名前:記述仕切れてないって話なのかな?
zfcだとそれが記述仕切れてると。 それならzfcがどうとか以前にペアノの公理の方に問題があるって事にならない? 俺の主張としてはzfcを使うより本質を表した公理を使いたいって事だからペアノが自然数の本質を表しきれてないならペアノを改良した公理を用いればzfcはいらないしその傾いてしまうってのも解決できるよね?zfcがなくても [] - [ここ壊れてます]
- 692 名前:132人目の素数さん [2019/01/19(土) 12:17:21.39 ID:Pl9ydUsa.net]
- グッドスタインに関してはちょっと勉強してみるよ。
ペアノを改良するならどうすれば良いのかっての考えてみる。
- 693 名前:学術 [2019/01/19(土) 13:05:23.38 ID:F8GF084k.net]
- 暗唱を発達させていけば、新しい数式が記述されるのか?
- 694 名前:132人目の素数さん mailto:sage [2019/01/19(土) 13:47:07.47 ID:kb0p2d2H.net]
- 普通に考えてペアノの公理に単純な問題があるだけなら既に解決してるし、
ペアノの公理を発展させるだけでZFCがいらなくなるなら既にZFCは使ってないよね キューネンの集合論という本を読めば分かるがZFCで普通の数学が扱えることをきちんと示している 一方ペアノ程度の弱い表現力では無理 まずは勉強して土台に立つところからだな
- 695 名前:132人目の素数さん mailto:sage [2019/01/19(土) 14:13:13.18 ID:x3ursV4d.net]
- 有限個の公理系では対象を唯一に指定できないんだから
自分の好きなようにすればいい 大体、本質なんて見方次第でどうにでもなるもんだから それを逆手にとって成果を出すのが数学ってもんよ
- 696 名前:132人目の素数さん [2019/01/19(土) 15:24:54.73 ID:lOkK/jxU.net]
- >>663
いやそうなんだけど何か不思議
- 697 名前:132人目の素数さん [2019/01/19(土) 15:27:49.61 ID:lOkK/jxU.net]
- >>665
>グッドスタインに関してはちょっと勉強してみるよ。 順序数の何とか表記で証明は簡単に理解できるけど それがペアノから証明も否定もできない(否定はできなくて当然)てことを 証明するためには どうも超準的な自然数(ペアノを満たす)を利用するらしいから かなり難しそうだよ
- 698 名前:132人目の素数さん [2019/01/19(土) 15:32:47.19 ID:lOkK/jxU.net]
- >>668
>有限個の公理系では対象を唯一に指定できないんだから これも不思議 実数論を展開できる可算集合の存在ってのがどうも腑に落ちなくて あと ペアノの公理って2階じゃないの?2階なら確定するらしいけど
- 699 名前:132人目の素数さん mailto:sage [2019/01/19(土) 15:55:11.07 ID:kb0p2d2H.net]
- そうだよ
668が間違ってる 一階述語論理ではペアノの公理、特に数学的帰納法は無限個の公理だが、 二階述語論理では量化記号の適用範囲が広がるから有限公理化できる
- 700 名前:132人目の素数さん mailto:sage [2019/01/19(土) 15:58:54.36 ID:hCdeXsBc.net]
- 横だけど>>668はモデルが一意に定まらない(カテゴリカルでない)と言ってるんじゃないの?
公理が有限個か無限個かではなく?
- 701 名前:132人目の素数さん [2019/01/19(土) 18:05:21.29 ID:udFEJ8kb.net]
- ∀S∋0[ ∀n∈S[suc(n)∈S] ⇒ N⊆S ]
数学的帰納法ってこれじゃダメ? 一階述語論理の1つの公理で表せてない?
- 702 名前:132人目の素数さん [2019/01/20(日) 02:06:23.34 ID:v2abW0FX.net]
- ヒカキンの年収が10億超え!?明石家さんま・坂上忍も驚愕の総資産とは??
https://logtube.jp/variety/28439 【衝撃】ヒカキンの年収・月収を暴露!広告収入が15億円超え!? https://nicotubers.com/yutuber/hikakin-nensyu-gessyu/ HIKAKIN(ヒカキン)の年収が14億円!?トップYouTuberになるまでの道のりは? https://youtuberhyouron.com/hikakinnensyu/ ヒカキンの月収は1億円!読唇術でダウンタウンなうの坂上忍を検証! https://mitarashi-highland.com/blog/fun/hikakin なぜか観てしまう!!サバイバル系youtuberまとめ tokyohitori.hatenablog.com/entry/2016/10/01/102830 あのPewDiePieがついに、初心
- 703 名前:YouTuber向けに「視聴回数」「チャンネル登録者数」を増やすコツを公開!
http://naototube.com/2017/08/14/for-new-youtubers/ 27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方 https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all 1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10 https://gigazine.net/news/20151016-highest-paid-youtuber-2015/ おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子 https://www.businessinsider.jp/post-108355 彼女はいかにして750万人のファンがいるYouTubeスターとなったのか? https://www.businessinsider.jp/post-242 1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD https://weekly.ascii.jp/elem/000/000/305/305548/ 世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円 https://forbesjapan.com/articles/detail/14474 [] - [ここ壊れてます]
- 704 名前:132人目の素数さん [2019/01/20(日) 08:35:16.54 ID:mpRY7WEL.net]
- 圏論は基礎論の一分野なの?
それとも代数学の一分野なの??
- 705 名前:132人目の素数さん mailto:sage [2019/01/20(日) 10:38:17.32 ID:FSHvLGh9.net]
- >>674
ペアノの公理を書く言語ではその論理式が書けない
- 706 名前:132人目の素数さん [2019/01/20(日) 11:34:28.18 ID:Hksl+fZv.net]
- >>676
集合論の派生じゃない?
- 707 名前:132人目の素数さん [2019/01/20(日) 13:14:55.48 ID:KLPpR7Ya.net]
- 写像の派生
- 708 名前:132人目の素数さん [2019/01/20(日) 13:44:25.83 ID:c1b9y5N6.net]
- >>677
そう言う事か。 議論領域を集合全体まで広げれば一階述語だけで行ける?
- 709 名前:132人目の素数さん mailto:sage [2019/01/20(日) 15:59:47.30 ID:f1w+gSVg.net]
- >676>>678-679
準同型射の一般化。 だからせめて準同型写像と準同型定理、「局所化」「商」概念ぐらいは最低限理解してないで圏論齧るとアレなんだ。
- 710 名前:132人目の素数さん [2019/01/20(日) 16:23:21.85 ID:Hksl+fZv.net]
- >>681
ベクトル空間群論位相空間ぐらいは基礎知識やろ
- 711 名前:132人目の素数さん mailto:sage [2019/01/20(日) 16:41:25.41 ID:f1w+gSVg.net]
- >>682
イデアルって言われてわかる?
- 712 名前:132人目の素数さん mailto:sage [2019/01/20(日) 17:14:18.85 ID:h4QVKkoV.net]
- なんか群環体習いたての学部生みたいな質問きた
- 713 名前:132人目の素数さん [2019/01/20(日) 17:18:21.26 ID:Hksl+fZv.net]
- >>683
あんまり無理せんでもええで
- 714 名前:132人目の素数さん mailto:sage [2019/01/20(日) 17:34:04.02 ID:f1w+gSVg.net]
- 基礎論厨ですらない連中って群環体って得意げに連呼する前に加群の一般論から見直せよ。
- 715 名前:132人目の素数さん mailto:sage [2019/01/20(日) 18:03:34.41 ID:Vn0GCtSE.net]
- >>680
集合というのは(非メタ理論的に)ZFC公理系のモデルの元のことであり、 議論領域というのはその言語の項のうちいくつかを集めた(メタ理論的)集合 ペアノの公理の言語ではそもそもZFCのモデルと無縁だから、ペアノの公理を記述する言語の議論領域として集合を表す項を集めるということ自体がカテゴリーミステイク ZFC公理系を記述する言語なら一階述語論理で有限論理式で表せるという意味なら、数学的帰納法を包含する超限帰納法が一階述語論理で書けるから可能
- 716 名前:132人目の素数さん mailto:sage [2019/01/21(月) 13:55:43.43 ID:w6a4JM45.net]
- 超限帰納法って騙された気分になるなー
- 717 名前:132人目の素数さん [2019/01/21(月) 15:41:53.92 ID:RBOFkc/O.net]
- zfcはそもそも置換公理だったかを一階述語論理じゃ書けないんじゃなかった?
- 718 名前:132人目の素数さん [2019/01/21(月) 17:08:32.04 ID:24rk+dlp.net]
- >>688
なるなる
- 719 名前:132人目の素数さん mailto:sage [2019/01/21(月) 17:47:30.47 ID:6CbUbf32.net]
- >>689
公理図式としては書ける。 有限個の公理系としては書けない。 >>676 あまりそういう人
- 720 名前:為的な分野分けに意味は無い []
- [ここ壊れてます]
- 721 名前:132人目の素数さん mailto:sage [2019/01/22(火) 02:47:28.38 ID:mvwK2+pd.net]
- 何を言ってはるのかわからんスレ!!!
- 722 名前:132人目の素数さん [2019/01/22(火) 07:49:57.55 ID:XL15UiTv.net]
- >>656
>つまりAかAの否定のどちらかは証明できる様な公理系を使うべきだって感じ? >完全性だっけ? 違うそれに無理 >ちなみにグッドスタインの定理はペアノでは証明も反証もできないって事でペアノが排中律に反する事の証明にもなってる。 違う >>661 を噛みしめよう
- 723 名前:132人目の素数さん [2019/01/29(火) 10:00:34.48 ID:HJwGzJdm.net]
- 公理図式ってのはメタ的に定めた公理って認識で合ってる?
- 724 名前:132人目の素数さん mailto:sage [2019/01/29(火) 14:24:44.83 ID:cq0xWlRA.net]
- 表現形式に過ぎんだろ
- 725 名前:132人目の素数さん mailto:sage [2019/01/29(火) 17:31:42.71 ID:10id4Ljd.net]
- 人間の5大欲求とはよく言うが、
実は知られていない6つめの欲求がある それが「自動化」だ 人間の歴史は自動化の歴史と言い換える事が出来る 如何に楽をしてより多くの仕事量(ジュール当たりのパフォーマンス)を 増やすか人間は苦心してきた その究極形となるのが汎用人工知能である これは人間の働きを全て代替する
- 726 名前:132人目の素数さん [2019/01/29(火) 18:31:50.60 ID:k4TL0lIg.net]
- 表現形式にメタ要素を入れなきゃならんかどうか、つまりある規則を言語内で論理式で表せるかどうかってどうでも良い事なの?
- 727 名前:132人目の素数さん [2019/01/29(火) 21:11:27.31 ID:2MAb6lmr.net]
- >>697
は? 何でどうでも良いなんて思ってると思った?
- 728 名前:132人目の素数さん [2019/01/31(木) 01:39:20.86 ID:m28CIc0+.net]
- >>686
>群環体って得意げに連呼する 基礎知識を得意げにって思うのは>>684が図星突いてるってことだな
- 729 名前:132人目の素数さん mailto:sage [2019/01/31(木) 06:56:24.42 ID:bObtqrbB.net]
- 形式的体系の定義から始めて公理的集合論→強制法・無矛盾性証明へと一繋がりになってる良書ってありますか?
- 730 名前:132人目の素数さん mailto:sage [2019/01/31(木) 11:59:10.44 ID:4IT60bH0.net]
- アライさんの「数学基礎論」
- 731 名前:132人目の素数さん [2019/01/31(木) 21:14:53.97 ID:m28CIc0+.net]
- >>701
どっちの?
- 732 名前:132人目の素数さん mailto:sage [2019/01/31(木) 22:06:02.90 ID:8x9dB1ud.net]
- 新井 数学基礎論
で検索するとアマゾンで二つ出てくるけど、ペーパーバックかどうかで中身は同じ
- 733 名前:132人目の素数さん mailto:sage [2019/01/31(木) 22:39:50.69 ID:bObtqrbB.net]
- 新井の数学基礎論って誤植が大量らしいね
- 734 名前:132人目の素数さん mailto:sage [2019/02/01(金) 08:41:22.38 ID:zo9lbB8n.net]
- そのレビューの日付と改訂版の日付を比較してみ
- 735 名前:132人目の素数さん [2019/02/01(金) 09:12:38.68 ID:b4FOCcvK.net]
- >>703
AIの大家じゃなくて?
- 736 名前:132人目の素数さん mailto:sage [2019/02/01(金) 09:28:15.99 ID:Ipw3HjU2.net]
- 旦那
- 737 名前:132人目の素数さん mailto:sage [2019/02/01(金) 16:06:42.89 ID:c4ueKt7h.net]
- 新井紀子に純粋数学の本を書く能力は無い
- 738 名前:132人目の素数さん mailto:sage [2019/02/02(土) 00:37:47.83 ID:Pm5+PWwO.net]
- >>706
> AIの大家じゃなくて? AIは嫁の紀子のほうだが彼女も別にAIの大家でも何でもない というよりも彼女の場合、AIを正しく理解しているかすら怪しい 単なるハッタリだけでAIに関して理論的にも技術的にも何も中身がない 彼女の本職であるはずの数学というか数理論理学(数学基礎論)に関してもね
- 739 名前:132人目の素数さん mailto:sage [2019/02/02(土) 05:34:46.09 ID:F/qcGu59.net]
- テレビ出有名らしい医者が「医学部入学志願者の採点を男女フェアにしたら8割女になる」っていってたんだが信じられないよな
数学の世界でも将棋の世界でも、どっからどう考えても女は男よりロジカルな思考能力が下なのにな
- 740 名前:132人目の素数さん mailto:sage [2019/02/02(土) 08:13:06.32 ID:FJtvD4sW.net]
- 大学受験レベルなら才能よりコツコツ努力を積み重ねることができるかどうかの方が効いてくる
- 741 名前:132人目の素数さん mailto:sage [2019/02/02(土) 10:27:45.93 ID:aneq0N3Y.net]
- ペーパーテストで高笑いはピンクな夫婦だけで十分だ
- 742 名前:132人目の素数さん mailto:sage [2019/02/02(土) 13:28:30.15 ID:VrLKMr4u.net]
- 性差別しか救いがない哀れな奴が多いな
- 743 名前:132人目の素数さん mailto:sage [2019/02/02(土) 13:55:03.35 ID:oPGKqDTJ.net]
- 新井紀子はインチキ
それだけのこと
- 744 名前:132人目の素数さん mailto:sage [2019/02/02(土) 14:36:06.20 ID:FJtvD4sW.net]
- そういやAIの東大受験の方は今どうなってんの?
- 745 名前:132人目の素数さん [2019/02/02(土) 17:33:06.09 ID:QHnGw9L1.net]
- メディアの露出多いけど好かれてないのな
- 746 名前:132人目の素数さん [2019/02/02(土) 17:33:38.82 ID:QHnGw9L1.net]
- >>715
なんかうまくいかないってやめたんじゃないっけ
- 747 名前:132人目の素数さん mailto:sage [2019/02/02(土) 18:09:50.01 ID:tNuWaaos.net]
- ただマネジメントとかコメンテーターやってるだけならともかく、数理論理学者を名乗ってる割に本当に数理論理学を理解してるのかも疑わしいからな
不完全性定理について(中身があってるかはともかく)話していたが、そんなことは数理論理学者でなくても知ってるし
- 748 名前:132人目の素数さん mailto:sage [2019/02/02(土) 18:32:58.33 ID:FJtvD4sW.net]
- >>717
ありがとう
- 749 名前:132人目の素数さん mailto:sage [2019/02/02(土) 19:43:28.64 ID:orDK7e9e.net]
- 数理論理学の研究者としても二流以下
AIの研究者としてはほぼ素人 これでも教授になって気に入らないやつの科研費を落とせるくらいの力があるw
- 750 名前:132人目の素数さん [2019/02/02(土) 21:24:12.51 ID:K6B8SSTJ.net]
- >>720
どこの教授だっけ 授業聞いてみたい
- 751 名前:132人目の素数さん mailto:sage [2019/02/02(土) 23:01:52.46 ID:F/qcGu59.net]
- この前新井の顔がメディアに出てたけど
あいつの前歯が細長くてちょっと気持ち悪かったの覚えてる
- 752 名前:132人目の素数さん mailto:sage [2019/02/03(日) 10:27:06.98 ID:FBF6hQnr.net]
- 東ロボ君の大失敗はもっと追及されるべき。
やっぱり仲良しグループで研究費を回している。
- 753 名前:132人目の素数さん mailto:sage [2019/02/03(日) 13:29:04.13 ID:aRut7bw3.net]
- 大きな成果だろ
- 754 名前:132人目の素数さん mailto:sage [2019/02/03(日) 13:59:00.93 ID:M5HUnzNr.net]
- 中高生の頃の俺なら、余裕で読解力()で東ロボくんに負ける自信あるけど、今は新井紀子より数理論理学を理解してるしな
何か具体的な成果とかあるんか?
- 755 名前:132人目の素数さん mailto:sage [2019/02/03(日) 14:37:33.23 ID:WRRrCqKb.net]
- 思うんだけど、東大ロボって単なる工学・情報技術の"つぎはぎ"なだけでしょ?
機械アームで紙をめくって、 紙をスキャンして書いてる内容を文字として認識して、 認識された文字の意味解釈をして適切な出力をして、 その出力に基づき、機械アームで鉛筆でマークする これは順に見て、ロボット工学→なんとか工学→AI→ロボット工学ってな感じの”つぎはぎ”でしょ? こんな東大ロボが東大入学出来るレベルまで実力あったとか言われた所で何も凄さを感じない
- 756 名前:132人目の素数さん mailto:sage [2019/02/03(日) 19:02:08.74 ID:CdNygQn2.net]
- >>724
どこが成果だ? >>726さんが指摘している通り、様々な工学(情報も含め)技術のツギハギに過ぎない そして本来なら、この東大ロボ計画で新たに開発されるべきだったAI技術の部分は何も新たなものを出せていない その挙句に、新井の言い訳は「日本語の理解が難しい」だった 日本語処理・理解が不可欠なのは「現実の入試問題を解く」という課題設定の時点で明らかだったのに その大前提の部分が「難しくて出来ませんでした」とは納税者を舐めるにも程がある この東ロボの本来の研究課題はその次の段階、つまり日本語で書かれた問題(の情報)を適切なフォーマルな内部形式に変換した次の段階にあったのだ そのフォーマルな内部形式として表現された問題を様々な
- 757 名前:知識を連携させることで如何にして速やかに解くか、という段階だよ
日本語の処理が難しかったです、というのは問題をフォーマルに変換するという本来の課題に至る前段階そのものがちゃんとできなかったということだ こんなのを「大きな成果」と呼んで良いなら、何をやっても何もできなくても、「科研費による研究は全て大きな成果を産み出している」と言えてしまうぞ [] - [ここ壊れてます]
- 758 名前:132人目の素数さん mailto:sage [2019/02/03(日) 21:00:00.45 ID:aRut7bw3.net]
- 問題意識のない奴には成果が見えない
|
|