面白い問題おしえて〜 ..
[2ch|▼Menu]
161:132人目の素数さん
09/03/20 06:06:47
ガウス-ラゲールの積分公式を求めるのと同じようにしてできる
(ax^6+by^6+cz^6=6! の代わりに a+b+c=1 とするとガウス-ラゲールそのもの)

関数 g(t), h(t) の内積を
(g(t), h(t)) ≡ ∫[0,∞] g(t) h(t) t e^(-t) dt
で定義する
(f(t), 1) = (f(t), t) = (f(t), t^2) = 0  …(1)
となる t の3次式 f(t) を求めると、定数倍を除いて
f(t) = t^3 - 12t^2 + 36t - 24
f(t) = 0 は相異なる3実根を持ち、それを x,y,z とする
({x,y,z} = {0.935822, 3.305407, 7.758770})

ax^n + by^n + cz^n = (t^(n-1), 1) (n = 1,2,3)  …(2)
となるように a,b,c を定めると、a,b,c,x,y,z は与条件を満たす

∵)
(t^(n-1), 1) = n!  …(3)
なので (2) より
ax^n + by^n + cz^n = n! (n = 1,2,3)
あとは ax^n + by^n + cz^n = n! (n = 4,5,6) を言えばよい
例えば n=5 のとき x^4 を f(x) で割った商を q(x) とすると
x,y,z は f(t) = 0 の根なので
ax^5 + by^5 + cz^5
= ax(x^4 - f(x)q(x)) + by(y^4 - f(y)q(y)) + cz(z^4 - f(z)q(z))
  x(x^4 - f(x)q(x)) は x,x^2,x^3 の線形結合(y,z についても同様)
  なので (2) を使って、
= (t^4 - f(t)q(t), 1) = (t^4,1) - (f(t), q(t))
  第1項に (3) を使い、q(t) は1次なので第2項に (1) を使って、
= 5!
n=4,6 のときも同様■


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4770日前に更新/254 KB
担当:undef