面白い問題おしえて〜な 十五問目 at MATH
[2ch|▼Menu]
[前50を表示]
150:132人目の素数さん
09/03/07 23:23:07
はっ!まさか4色問題がらみ?
と直感だけで言ってみる。


151:132人目の素数さん
09/03/07 23:28:21
>>145
n=5^kまたはn=12*5^kのときにg(n)=nになることは証明できた。
めんどいから書かんけど。

152:132人目の素数さん
09/03/08 03:17:55
>>150
例えるなら,4色問題よりラグランジュの4平方和定理(全ての自然数は高々4つの平方数の和で表せる)の方が近いだろう。

153:132人目の素数さん
09/03/09 16:12:53
>>99の等式って
Σ[k=1,n]kHr=nH(r+1)
と同値なのかな?

154:132人目の素数さん
09/03/11 08:24:46
教養のない人間=獣を証明せよ

155:132人目の素数さん
09/03/11 08:34:53
まずは教養のない人間と獣の定義を聞かせてもらおうか?


156:132人目の素数さん
09/03/11 08:42:13
∀x{(x∈教養のない人間)→(x∈獣)}は納得できるが
∀x{(x∈獣)→(x∈教養のない人間)}はかなり無理のある定義しないと証明できないんじゃなかろか

157:132人目の素数さん
09/03/14 15:16:09
>50 京都+大阪=東京 ,これを証明せよ

京都で買ったおたべと大阪で買ったたこやきは、東京のバナナだった。




158:132人目の素数さん
09/03/14 22:36:51
>>157

「おたべ」は (株)おたべ〔京都〕 の
「§京都銘菓\おたべ 」 は (有)あど・おたべ〔京都〕 の  (4484724号)
「大阪新名物\たこ焼き\ようかん」は(有)黒須製餡所〔栃木・今市〕の  (4699568号)
「東京ばな奈」は (株)グレープストーン〔東京〕 の 登録商標でつ。。。

159:132人目の素数さん
09/03/20 01:49:57
面白い解法があることを期待して転載
スレリンク(math板:209番)

実数a,b,c,x,y,zが

ax+by+cz=1
ax^2+by^2+cz^2=2
ax^3+by^3+cz^3=6
ax^4+by^4+cz^4=24
ax^5+by^5+cz^5=120
ax^6+by^6+cz^6=720

を満たすとき、ax^7+by^7+cz^7の値を求めよ

160:132人目の素数さん
09/03/20 03:28:42
ワクワク…、ワクワク…

161:132人目の素数さん
09/03/20 06:06:47
ガウス-ラゲールの積分公式を求めるのと同じようにしてできる
(ax^6+by^6+cz^6=6! の代わりに a+b+c=1 とするとガウス-ラゲールそのもの)

関数 g(t), h(t) の内積を
(g(t), h(t)) ≡ ∫[0,∞] g(t) h(t) t e^(-t) dt
で定義する
(f(t), 1) = (f(t), t) = (f(t), t^2) = 0  …(1)
となる t の3次式 f(t) を求めると、定数倍を除いて
f(t) = t^3 - 12t^2 + 36t - 24
f(t) = 0 は相異なる3実根を持ち、それを x,y,z とする
({x,y,z} = {0.935822, 3.305407, 7.758770})

ax^n + by^n + cz^n = (t^(n-1), 1) (n = 1,2,3)  …(2)
となるように a,b,c を定めると、a,b,c,x,y,z は与条件を満たす

∵)
(t^(n-1), 1) = n!  …(3)
なので (2) より
ax^n + by^n + cz^n = n! (n = 1,2,3)
あとは ax^n + by^n + cz^n = n! (n = 4,5,6) を言えばよい
例えば n=5 のとき x^4 を f(x) で割った商を q(x) とすると
x,y,z は f(t) = 0 の根なので
ax^5 + by^5 + cz^5
= ax(x^4 - f(x)q(x)) + by(y^4 - f(y)q(y)) + cz(z^4 - f(z)q(z))
  x(x^4 - f(x)q(x)) は x,x^2,x^3 の線形結合(y,z についても同様)
  なので (2) を使って、
= (t^4 - f(t)q(t), 1) = (t^4,1) - (f(t), q(t))
  第1項に (3) を使い、q(t) は1次なので第2項に (1) を使って、
= 5!
n=4,6 のときも同様■

162:132人目の素数さん
09/03/20 06:07:58
(続き)
同じようにして
ax^7 + bx^7 + cz^7
= ax^4(x^3-f(x)) + by^4(y^3-f(y)) + cz^4(z^3-f(z))
= 12a(x^6-3x^5+2x^4) + 12b(y^6-3y^5+2y^4) + 12c(z^6-3z^5+2z^4)
= 12 (t^5 - 3t^4 + 2t^3, 1)
= 12(6! - 3*5! + 2*4!)
= 4896

# a,b,c,x,y,z の一意性は言えてないけど

163:132人目の素数さん
09/03/20 18:51:06
>>159
高校数学の範囲内の問題?

164:132人目の素数さん
09/03/20 20:05:00
>>163
p[n] = ax^n+by^n+cz^n について、漸化式
p[n] = A p[n-1] + B p[n-2] + C p[n-3]
の問題に帰着できる。

165:132人目の素数さん
09/03/20 21:26:51
>>161
蛇足だが・・・

 f(t) = t^3 - 12t^2 + 36t - 24 = (t-4)^3 -12(t-4) -8 = 16{4T^3 -3T -(1/2)},
ここに T = (t-4)/4,
 x = 4 + 4・cos( 7π/9) = 0.93582222752408785919042939777833・・・
 y = 4 + 4・cos(13π/9) = 3.3054072893322786045931334929227・・・
 z = 4 + 4・cos( π/9) = 7.7587704831436335362164371092989・・・

{a,b,c} は 次の多項式の根。
 g(u) = u^3 - (3/4)u^2 + (11/12^2)u - {1/(3・12^3)} = (u -1/4)^3 - (1/9)(u -1/4) -(1/81) = (2/81√3){4U^3 - 3U - (√3)/2},
 ここに U = {(3√3)/2}(u -1/4)
よって
 a = (1/4) + {2/(3√3)}cos( π/18) = 0.62905268086775253761255598397337・・・
 b = (1/4) + {2/(3√3)}cos(-11π/18) = 0.11835638545510051414429421693642・・・
 c = (1/4) + {2/(3√3)}cos( 13π/18) = 0.002590933677146948243149799090212・・・

166:132人目の素数さん
09/03/20 21:42:04
>>164
特性多項式
 f(t) = t^3 -At^2 -Bt -C,   >>161
から出まつね。

167:132人目の素数さん
09/03/20 22:33:05
中学三年の問題らしいよ

168:132人目の素数さん
09/03/21 03:03:23
解法はありきたりだが結果が面白い問題ということで一つ。

数列I_nと関数列f_n(x)を次のように定義する。
I_n=∫[0,π/2]cos^(2n)(t)dt
f_n(x)=∫[0,π/2]cos(xt)cos^(2n)(t)dt (xは任意の実数)
(1)I_n,f_n(x)を計算せよ。
(2)任意の実数xについて lim[n→∞]f_n(x)/I_n=1
 が成り立つことを示せ。

169:132人目の素数さん
09/03/21 03:44:35
>>165
その a,b,c,x,y,z が与えられた方程式を満たすのはいいとして、
逆に、与えられた方程式を満たす a,b,c,x,y,z が(並べ替えを除いて)
>>165 のものだけに限ることは言えるんだろうか

170:132人目の素数さん
09/03/21 20:13:57
一意性もOKみたい

171:132人目の素数さん
09/03/22 09:50:28
>>170
考えてみたけど、ごちゃごちゃした証明しか思いつかない
簡単に証明できたんなら教えて

172:132人目の素数さん
09/03/22 14:46:10
>>159, >>171 (>>164にあるp[n]の母関数を使いました)
F(t):=-(a+b+c)+ae^(xt)+be^(yt)+ce^(zt) をマクローリン展開すると仮定により
F(t) = t + t^2 + t^3 + t^4 + t^5 + t^6 + (7次以上の項)
となる。この6次までの項からなる多項式を G(t) とおく:
G(t) = t + t^2 + t^3 + t^4 + t^5 + t^6。

f(t):=F'(t) は(A=x+y+z, B=yz+zx+xy, C=xyz とおくと)
f'''-Af''+Bf'-Cf=0 を満たすので
g(t):=G'(t) に対して g'''-Ag''+Bg'-Cg の2次までの項は無い。(※)-->>173

実際に計算すると(h:=g'''-Ag''+Bg'-Cg とおくと)
h(t) = 24-6A+2B-C + (-2C+6B-24A+120)t + (-3C+12B-60A+360)t^2 + (3次以上の項)
となるので A,B,C は連立方程式
24-6A+2B-C=0, -2C+6B-24A+120=0, -3C+12B-60A+360=0
の解で、これを解くと A=12, B=36, C=24 が得られる。

173:132人目の素数さん
09/03/22 14:47:02
注:一般に二つの関数f(t),g(t)のマクローリン展開がn次の項まで一致すれば
二つの関数 f'''-Af''+Bf'-Cf と g'''-Ag''+Bg'-C のマクローリン展開は
n-3次の項まで一致します。>>172では(※)でそれを使ってます。

手で計算するのが面倒ならMaximaで↓これを1行ずつ実行させればいいです。
F(t):=-(a+b+c)+a*exp(x*t)+b*exp(y*t)+c*exp(z*t); taylor(F(t),t,0,6);
G(t):=t+t^2+t^3+t^4+t^5+t^6; define(g(t), diff(G(t),t,1));
define(h(t), diff(g(t),t,3)-A*diff(g(t),t,2)+B*diff(g(t),t,1)-C*g(t))$ rat(h(t),t);
eq0:h(0)=0;
define(h1(t), diff(h(t),t,1))$ eq1:h1(0)=0;
define(h2(t), diff(h(t),t,2))$ eq2:h2(0)=0;
linsolve([eq0,eq1,eq2], [A,B,C]);

結局これもゴチャゴチャしとるな・・・

174:132人目の素数さん
09/03/22 14:54:39
訂正:>>173の二行目

(誤) g'''-Ag''+Bg'-C
(正) g'''-Ag''+Bg'-Cg

175:132人目の素数さん
09/03/22 15:25:07
マクローリン展開のn-3次の項がうんぬんとかやるくらいなら
もう行列式の値を x、y、z の対称式として愚直に
計算したほうがすっきりしてるような

176:132人目の素数さん
09/03/22 16:10:59
A=x+y+z, B=yz+zx+xy, C=xyz とおくと

x^4 = Ax^3 - Bx^2 + Cx
y^4 = Ay^3 - By^2 + Cy
z^4 = Az^3 - Bz^2 + Cz より 24 = ax^4 + by^4 + cz^4 = 6A-2B+C

x^5 = Ax^4 - Bx^3 + Cx^2
y^5 = Ay^4 - By^3 + Cy^2
z^5 = Az^4 - Bz^3 + Cz^2 より 120 = ax^5 + by^5 + cz^5 = 24A-6B+2C

x^6 = Ax^5 - Bx^4 + Cx^3
y^6 = Ay^5 - By^4 + Cy^3
z^6 = Az^5 - Bz^4 + Cz^3 より 720 = ax^6 + by^6 + cz^6 = 120A-24B+6C

これで終りだった・・・orz

177:132人目の素数さん
09/03/22 23:50:03
>>176
神キタ━(゚∀゚)━!!!

178:171
09/03/22 23:59:37
>>172-176
サンクス
これから読ませてもらう

179:132人目の素数さん
09/03/24 11:05:25
充分に大きい白い容器と黒い容器が無限個ある。
最初、ひとつの白い容器に純水が 1kg、
ひとつの黒い容器に 100% のアルコールが 1kg 入っている。
以下の操作を好きなだけ行って、最終的にひとつの白い容器になるべく
アルコール濃度の高い 1kg の液体を作りたい。
このアルコール濃度の上限はいくらか?

可能な操作
・ひとつの容器から同じ色の別の容器(空でなくてもよい)に好きなだけ液体を移してよく混ぜる
・白い容器と黒い容器をひとつずつ取り、両方の容器の液体を一緒にしてよく混ぜて、
もとの質量と同じだけ両方の容器に分ける
(混ぜる前に、白と黒の容器にそれぞれ m, M の質量の液体が入っていたら、
混ぜたあとも、白と黒の容器にそれぞれ m, M の質量の液体を入れるということ)

180:132人目の素数さん
09/03/24 11:24:01
濃度は重量濃度です
アルコール濃度 = 液体中のアルコールの質量 / 液体の質量

181:132人目の素数さん
09/03/24 14:14:48
白い容器のほうの濃度を a、黒い容器のほうの濃度を b 、
操作後の濃度を a1 及び b1 とすると
a < a1 < b1 < b が分かる。
また a1 ≦ 1/2(そうでないとするとアルコールの総量が増えたことになる)。
二番目の操作を繰り返すことによって白い容器内の濃度は 1/2 に
限りなく近づけることが出来る。よって50%。

182:132人目の素数さん
09/03/24 18:53:59
1 - exp(-1)  ≒  0.632 まで濃度をあげられるんじゃないか?



183:132人目の素数さん
09/03/24 20:14:35
体積モル濃度を調べよう。

184:132人目の素数さん
09/03/24 20:46:50
>>181
> a1 ≦ 1/2(そうでないとするとアルコールの総量が増えたことになる)。

ここの理屈がわからん。
なぜa1>1/2だと、アルコールの量が増えたことになるんだ?

185:132人目の素数さん
09/03/24 22:01:03
1) 最初に白い容器の純水をn個の白い容器に等分する。
2) 次に、n個全ての白い容器に対して、その白い容器をひとつと黒い容器を混ぜ、戻す。
3) 最後にn個の白い容器のをすべてひとつの白い容器に集める。

たとえば、n が 2の場合
1) 純水を白い容器2つに1/2kgづつに分ける。
2-1) ひとつめの白い容器と黒い容器を混ぜ、戻す。 ここで黒い容器に残るアルコールは2/3kg 
2-1) ふたつめの白い容器と黒い容器を混ぜ、戻す。 ここで黒い容器に残るアルコールは(2/3)^2 = 4/9 kg
3) 白い容器をすべて集めると、アルコールは1-4/9 = 5/9 kg

ここで >>181の 
> a1 ≦ 1/2(そうでないとするとアルコールの総量が増えたことになる)。 
は、正しくないことがわかる。

この方法だと、白い容器に入るアルコールの量は、 1-(n/(n+1))^n なので、使用する白い容器の数を増やせば 
最大で lim_{n->∞}(1-(n/(n+1))^n) = 1 - exp(-1) のアルコールを白い容器に入れることができる。

これが最大かどうかは知らん。


186:132人目の素数さん
09/03/24 22:03:20
× 2-1) ふたつめの
○ 2-2) ふたつめの

187:132人目の素数さん
09/03/24 22:05:08
瑣末なことだが、白い容器は3個あれば事足りる。

188:132人目の素数さん
09/03/25 06:54:29
n等分ではなく
1番目の白い容器には1/n、2番目の容器には1/n × (n/(n+1)) … と等比になるように分配する
つまり n番目の容器には 1/n × (n/(n+1))^(n-1) の水。 # この数列の和はもちろん1
(2)以降の操作は同じ。

きちんと計算はしていないが、
nを大きくとれば、白い容器のアルコールを、いくらでも1に近づけることができると思うが、どうだろうか。


189:132人目の素数さん
09/03/25 07:07:32
訂正:
× 1番目の白い容器には1/n 
○ 1番目の白い容器には1/(n+1)


190:132人目の素数さん
09/03/25 07:16:12
あ、ダメか 
1 - exp(-1) は超えられないや。

191:132人目の素数さん
09/03/26 02:03:09
某サイトからの引用。

2人組の手品師AとBが、観客に対して次のようなマジックを行なう。
問: このマジックのタネ(phase0 の内容)を考案せよ。

(phase0)
事前にAとBは綿密に打ち合わせをしておく。

(phase1)
Bには目隠しと耳栓をさせる。Aは1組52枚のトランプカードを
全て観客の一人に渡し、その中から好きな5枚を選んでもらう。
余った47枚はその場で廃棄する。

(phase2)
Aは、観客が選んだ5枚の内容を確認した上で、その中の1枚を指定する。
観客はAが指定した1枚を手に残して隠し持ち、その他の4枚をAに返却する。
Aはその4枚を表向きにして机の上に並べ※、舞台から退場する。

(phase3)
Bが目隠しを外し、机上の4枚を見て観客の手にある1枚を当てる。(終了)

※4枚のカードを机の上に並べる際は、あらかじめ固定された
「同じ向き」「等間隔」「一列」のポジションに置かなければならない。
Aのアレンジが許されるのは、4枚の「並び順」のみであるとする。

192:132人目の素数さん
09/03/26 02:16:34
コマ大のやつね

193:191
09/03/26 02:56:14
あらら。有名だったのかな。
一応、引用元はここの19番なんだけど。
URLリンク(www.qbyte.org)

他にもいろいろ面白いのがありそうでマジお勧め。
皆さんも気に入ったのがあったら翻訳転載よろ。

194:179
09/03/26 07:29:29
>>190
その方法はまだ計算してないから、上限がいくらかは分からないけど、
別のやり方で 1-(1/e) 以上にできます

>>193
そのサイトの方法だと52枚までだけど、もっと枚数増やせないんだろうか

195:132人目の素数さん
09/03/26 13:42:27
>>193
URLリンク(gascon.cocolog-nifty.com)
この後半に紹介されているが、そこから採ったのかも。番組では実演して失敗してた。

196:132人目の素数さん
09/03/26 17:30:35
a


197:132人目の素数さん
09/03/27 00:24:19
>>194
直後の第20問で、124枚まで増やした場合が採り上げられてるよ。

198:132人目の素数さん
09/03/27 03:08:48
以下の条件を満たす四角形は存在するか?
存在するなら例示し、存在しないならその事を証明せよ。

(i)
三辺の長さと対角線の長さが全て整数
(ii)
四辺の長さと対角線の長さが全て整数

199:198
09/03/27 03:14:11
書き損ねた。
(iii) (ii)を満たし、かつどの2辺をとっても長さが等しくならない。

200:132人目の素数さん
09/03/27 13:22:54
(iii)とは?

201:132人目の素数さん
09/03/27 15:28:19
四辺の長さと対角線の長さが全て整数
かつ
どの2辺をとっても長さが等しくならない。

すると(ii)は円か何かを使うのかな。

202:132人目の素数さん
09/03/27 15:40:57
(i)(ii)は同じ長さの辺があってもいいの?
もしそうなら、例えば縦横比3:4の長方形(対角線は5)があるけど。

203:132人目の素数さん
09/03/27 23:31:05
くそ、卑猥な記号ばかり並んでやがる

204:132人目の素数さん
09/03/28 01:19:56
問題 1.
a,b,c は正の実数で、a+b+c=1 を満たすとき
 a^(1-a) * b^(1-b) * c^(1-c) ≦ 1/9,

問題 2.
(a) 2008のすべての約数d >0 に対して P(d) = 2008/d,
  となるような 整数係数の多項式P(x)は存在するか?

(b) nのすべての約数d >0 に対して P(d) = n/d,
  となる整数係数の多項式P(x)が存在するような自然数nを求めよ。

問題 4.
fは正整数から非負整数への写像とする。次の条件を満たすfをすべて定めよ。
 (1) f(mn) = f(m) + f(n),
 (2) f(2008) = 0,
 (3) f(n) = 0, for all n≡39 (mod 2008).

問題 5.
nを自然数とするとき、数列 n + [√n] + [ n^(1/3) ] に含まれない自然数をすべて挙げよ。
ここに [ x ] はx以下の最大の整数である。

URLリンク(www.math.ust.hk)
Austrian M.O. 2008, Final round (part 2)
2008/06/07〜08

205:132人目の素数さん
09/03/28 18:10:26
問2への答え
(a)2008=251*8より約数は1,2,4,8,251,502,1004,2008の8つ。
今f(1)=2008,f(2)=1004,f(4)=502,f(8)=251,f(251)=8,f(502)=4,f(1004)=2,f(2008)=1
よってf(x)=(x-1)A(x)+2008=(x-2)B(x)+1004=(x-4)C(x)+502=(x-8)D(x)+251
=(x-251)E(x)+8=(x-502)F(x)+4=(x-1004)G(x)+2=(x-2008)H(x)+1

一般にA(x)とD(x)の次数が同じならば、A(x)〜H(x)を整数係数多項式として
f(x)=A(x)B(x)+C(x)=D(x)E(x)+F(x)と書ける時、f(x)=A(x)D(x)G(x)+H(x)と書ける為
与式を満たす整数係数多項式P(x)は存在する。

(b){n|nの平方根が整数にならない}

206:132人目の素数さん
09/03/28 19:04:00
>>205
(b)なんだけど、おれが考えた答えと違う。

x = (nの約数) のとき、 xP(x)-n = 0 である。
よって xP(x)-n = Q(x) (x-d_1) (x-d_2) ... (x-d_m) (ただし、d_i はすべての n の約数を渡る。Q(x) は適当な整数係数多項式)
両辺の定数項を比較して n は d_1 * d_2 * ... * d_m の倍数である。
nの約数はn自身も含むので、nが素数でなければ、n < d_1 * d_2 ... * d_m となるので
nが素数であることが必要条件。

逆に n が素数なら、xP(x) - n = -(x-1)(x-n) = -x^2 + (n+1)x - n として
P(x) = x - (n+1) をとればいい。

よって n が素数であることが必要十分。

207:132人目の素数さん
09/03/29 03:15:42
nが素数のときはP(x)=x−(n+1)とすればよい。

nが合成数のときは、ある素数p,qについてn=pqmとなる。
P(x)の定数項をaとする。

p=qのとき:仮定よりP(n)=1だから、a≡P(n)≡1 (mod p)が成り立つ。
次に、x=pとして、P(p)=n/p=pm となるからP(p)≡0 (mod p)
一方、P(p)≡a≡1 (mod p)だから、矛盾。

p≠qのとき:P(n)=1だから、a≡P(n)≡1 (mod p)が成り立つ。また、
P(pm)=n/(pm)=qだから、a≡P(pm)≡q (mod p)となり、よってq≡1 (mod p)が
成り立つ。つまりp|(q−1)が成り立つ。これとq−1>0より、q−1>pとなる。
pとqの役割を入れ替えても同様の議論が成り立ち、そのときp−1>qが得られる。
よってq−1>p>q+1となり、矛盾。

208:132人目の素数さん
09/03/29 06:45:31
>>205
f(x) = (x-1)A(x) +2008,
A(x) = -1004 + (x/2 -1)[502 -(x/4 -1){251 - (x/8 -1)[8 -(x/251 -1){4 - (x/502 -1)[2 - (x/1004 -1)]}]}] + r(x)
   = -1004 + 502(x/2 -1) -251(x/2 -1)(x/4 -1) +8(x/2 -1)(x/4 -1)(x/8 -1) -4(x/2 -1)(x/4 -1)(x/8 -1)(x/251 -1) +2(x/2 -1)(x/4 -1)(x/8 -1)(x/251 -1)(x/502 -1) -(x/2 -1)(x/4 -1)(x/8 -1)(x/251 -1)(x/502 -1)(x/1004 -1) +r(x)
r(x) = (x-2)(x-4)(x-8)(x-251)(x-502)(x-1004)(x-2008)g(x),

209:132人目の素数さん
09/04/01 01:19:15
数日前に質問スレで、以下の趣旨の問題が投下され、解決することなく流れていた。

「1〜nの番号がついた玉を無作為に一列に並べたとき、連続するどの2つの番号も、
その順番通りに隣接して配置されない順列のパターン数は?」
(もとの問題は楽曲のシャッフル演奏が題材だった)

n=3の場合、12も23も現れない配置ということで、132、213、321の3通りとなる。
帰納的な考察により、そのようなパターン数をa(n)とおいたとき、
a(1)=a(2)=1として、a(n)=(n-1)*a(n-1)+(n-2)*a(n-2)となることがわかった。

これって解けるのかな。
閉じた式じゃなくても、再帰構造が排除できればいいとして。

210:132人目の素数さん
09/04/01 02:06:54
>>209
不完全ガンマ関数Γ(m+1,x) := ∫[x,∞] t^m exp(-t) dt を使うと
 a(n) = Γ(n+2,-1) / (n e) になる.
不完全ガンマの展開公式
 exp(x) Γ(n+2,x) = Γ(n+2) Σ[k=0,n+1] x^k/k!
を使えば
 a(n) = ( (n+1)! Σ[k=0,n+1] (-1)/k! ) / n
になる.例えば n = 3 だと 4! (1 - 1/2 + 1/3! - 1/4!) / 3 = 3.

211:132人目の素数さん
09/04/01 16:35:36
>>210
なんか違わない?計算が合わないんだけど。

>>209
y = x + y' (x^2+x^3) ていう微分方程式を解けば、各係数がその数列のなっているはず。


212:132人目の素数さん
09/04/01 20:22:10
>>211
ん、あわない?具体的に指摘頼む。
漸化式と一致してることは、小さい n に対しては確認したつもりだけど。

213:132人目の素数さん
09/04/01 20:24:07
>>212
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。
> 漸化式と一致してることは、小さい n に対しては確認したつもりだけど。


214:132人目の素数さん
09/04/01 23:31:42
>>209
b[n]=n*a[n]とおけば、その漸化式はb[n]=n*b[n-1]+n*b[n-2]と表せる。
b[n]-(n+1)*b[n-1]=-(b[n-1]-n*b[n-2]) と書けるので、n≧3とすれば
b[n]-(n+1)*b[n-1]=(-1)^(n-2)*(2*1-3*1*1)=(-1)^(n-1) となる。
これはn=2でも正しいので、以下n≧2とする。
b[n]=(n+1)b[n-1]+(-1)^(n-1) の両辺を(n+1)!で割れば
b[n]/(n+1)!=b[n-1]/n!+(-1)^(n-1)/(n+1)!
b[n]=(n+1)!*{Σ[k=2,n](-1)^(k-1)/(k+1)!+b[1]/2!}
   =(n+1)!*Σ[k=1,n](-1)^(k-1)/(k+1)!
よってa[n]=(n+1)!/n*Σ[k=1,n](-1)^(k-1)/(k+1)!=
これはn=1でも成り立つ。

215:132人目の素数さん
09/04/02 00:33:16
事故解決しました

216:209
09/04/24 00:15:31
>>210-214
遅くなったが、ありがとう。

217:132人目の素数さん
09/04/24 21:42:07
A君はn枚、B君はn+1枚の公正なコインを持っている(n≧1)。
両者ともに全てのコインを投げたとき、A君の表の枚数よりも
B君の表の枚数の方が真に大きくなる確率を求めよ。

218:132人目の素数さん
09/04/24 22:48:53
age

219:現場の職人
09/04/24 23:50:17

切り出した木の側面を切って

最も無駄のない柱を作るには

曲尺をどのようにして使うのであろうかっ。

【 配点 1 点 】


220:132人目の素数さん
09/04/25 03:31:21
最も無駄のない とは どういう意味なのか

221:ユビー ◆6wmx.B3qBE
09/04/25 07:47:17
>>217
nも乱数で確率なの?

222:132人目の素数さん
09/04/25 10:28:49
>>217
nの値にかかわらず、求める確率は 1/2

223:132人目の素数さん
09/04/25 10:43:31
>>219
糞スレ立てんなウンコ虫が

224:132人目の素数さん
09/04/25 12:38:27
>>223
用語の間違いに注意

225:キノコ狩りが趣味 ◆ghclfYsc82
09/04/25 12:51:17
あの〜
ワラビが右巻きでゼンマイが左巻きだって、どうやって証明したらいいのでしょうか?



226:132人目の素数さん
09/04/25 12:56:00
>>225
まずワラビとゼンマイの定義がなければ話になりません
それらの定義を述べてください

227:132人目の素数さん
09/04/25 13:13:59
転載
スレリンク(math板:38番)
解答案は75。

相異なる9個の整数からなる集合Sがあり、各元の正の素因数はすべて3以下である。
Sからうまく相異なる3個の元をとれば、それらの積がある整数の3乗になることを示せ。

228:キノコ狩りが趣味 ◆ghclfYsc82
09/04/25 17:09:22
>>226
ワラビは京浜東北線の駅にありますが、ゼンマイは昔の時計で使いました。
どっちが美味しいんでしょうか、それだけでも知りたくて・・・



229:132人目の素数さん
09/04/25 17:27:57
>>228
まずはワラビやゼンマイの定義を述べよ

230:ぺれるまん ◆ghclfYsc82
09/04/25 18:52:17
>>229
調べたんですが、ゼンマイの学名はOsmunda japonicaで山野に生えてて水気が多いところを
好むという特徴だけなんですね。それでワラビは確定した分類体系さえ無いんだそうで、食べ過ぎ
たらアカンそうですが、色んな食べ方があるそうですねぇ。どうやら山でなくても畑でも出るそうで、
おひたしと天麩羅がおススメだそうです。

何方か定義を御存じではないでしょうか?



231:132人目の素数さん
09/04/25 22:25:36
今月の日経サイエンスのパズルがわからん。
問題の概要はこんな感じ。

4名の死刑囚(A,B,C,D)が一人ずつ部屋に入って運命のくじ引きをする。
部屋には4つの箱があって、それぞれの箱に1枚ずつ
A,B,C,D誰か一人を助ける免罪符が入っている。

4つの内3つの箱を開けて、自分の免罪符を引き当てれば勝ち。
ただし、4人は一心同体なので、誰かが失敗すれば全員処刑される。

部屋には一人ずつ順番に入り、別の出口から出るので、
どの箱にどの免罪符が入っていたかを教えることは出来ない。

単純に勝率を計算すると、(3/4)^4=81/256で、勝率は1/3以下。
しかしAには3/4の勝算があり、B,C,Dにそれを伝えた。
・・・ここまで。

232:231
09/04/25 22:29:45
事前の相談が許されてるから、勝率0%のやり方を避けることは出来る。
(全員同じ開け方をすれば確実に死ねる)
完全に無作為に開けるんじゃなくて、それを避けるという相談をするだけで、
ちょっぴり勝率が上がるのはわかる。

また、一人目が失敗したときの事は考えなくて良いから、
一人目がどこを開けたか聞いておけば(事前に決めておけば)、
二人目以降の勝率が若干上がることはわかる。

しかし、どういう戦略をとっても、最初の一人の勝率は3/4だろ。
そうすると、後の3人はその後100%成功しなくちゃいけない。
が、100%にはなりそうにないんだが。。。

一人目が箱を開けっ放しにするとか、
ガンのための傷を付けるとかのズルしか思いつかん。
福本伸行の読み過ぎ?

233:132人目の素数さん
09/04/26 00:39:22
箱の中身を入れ替えればいいじゃん

234:132人目の素数さん
09/04/26 03:34:23
中身の入替えを許したら簡単すぎじゃね?

もっとも、箱の配置が指定されてないから、部屋の中で
箱がいかように配置されていたとしても、そのうちの1個を
特定できるようなルールをあらかじめ策定するってのは、
それはそれで面白いかもしれない。

しかしそういう意図の問題なんだろうか。

235:231
09/04/26 04:18:58
>>233
最初の人が、箱の中身を入れ替えるか・・・
(1枚は入れ替えられないが、次の人がなんとかする?)
いっそ箱の並びを変えて、左からABCDにしておけば、
後の人は簡単だわな。

もう一回問題を読み直してみたが、
免罪符の箱の部屋に見張りが居るかどうかは書いてなかった。
しかし・・・見張りが居なかったら、3つじゃなくて4つ全部開けるのも可能だろう。

ヤンジャンや近代麻雀じゃなくて、日経サイエンスだから・・・
ルールの穴じゃなくて、場合分けとかで解くと思うんだが。

236:132人目の素数さん
09/04/26 06:00:00
こんな確率もとめてみたい その1/3
スレリンク(math板)
430-485


237:132人目の素数さん
09/04/26 09:14:14
>>231
事前相談のみで
後の人に情報が残せない場合
(前の人が開けた結果に応じた作戦変更ができない)
最大で 9/24 にしかならないので (すべての組み合わせを試した)
なんらかの方法で情報を残すことをしないと、それ以上にはできない。

238:132人目の素数さん
09/04/26 14:06:37
各箱にA,B,C,Dと名前をつける。
囚人Xは、最初に自分と同じ名前のついた箱Xをあける。
箱Xの中に、Yの免罪符があったら、次に箱Yをあける。
箱Yの中に、Zの免罪符があったら、次に箱Zをあける。

239:132人目の素数さん
09/04/26 17:42:14
なるほど

240:231
09/04/26 21:34:54
>>238
A箱からスタートして、Aカードが3つ目だった場合、その次はまたA箱に来る。
つまり、3の輪っかが出来ているので、全員セーフ。

A箱からスタートして、Aカードが2つめだった場合、
他の箱は最悪でも2輪っかだからセーフ。

A箱からスタートして、Aカードがいきなりあった場合、
他の箱は最悪でも3輪っかだからセーフ。

A箱からスタートしてAカードが4の距離だった場合、
4輪っかが出来ているので、全員死亡。

最初の人が失敗した場合は必ず全員失敗し、
最初の人が成功した場合には全員成功するアルゴリズムってことか…

いや…すごすぎる!!! 俺も、成功の場合を裏返して、
「最初の人が失敗した場合に他の失敗も集めてしまう戦略にするんじゃないか」
とは思ったけど…

類似問題知らないで解けたとしたら、IQ150-160くらいありそうだ。

241:132人目の素数さん
09/04/26 22:11:25
上手いね。
出題者は巡回置換からこの問題を発想したんだろうか。

1 2 3 4
2 3 4 1

みたいな配置だったら失敗。そうでなければ成功。

いやー、こんな応用があったとは。

242:132人目の素数さん
09/04/28 17:46:06
コインランドリーを並べ替えてできる言葉はコインランドリーを含めて何通りあるか。
ただし、ンおよびーを頭に持ってきてはいけません。また、ンが連続してもいけませんし、ンの直後にーがきてもいけません。

243:132人目の素数さん
09/04/28 18:08:43
全文字使うのか?

244:132人目の素数さん
09/04/28 18:23:28
>>243
もちろん

245:132人目の素数さん
09/04/28 19:16:58
ちゃんとした言葉になってなくてもいいの?

246:132人目の素数さん
09/04/28 19:22:09
インリンドコラー

247:132人目の素数さん
09/04/28 19:28:51
ただ数えるだけ。4500個。

248:132人目の素数さん
09/04/28 19:52:54
意味のない言葉でももちろんかまいません。
4500個ではないと思いますよ。

249:132人目の素数さん
09/04/28 19:57:11
プログラム組んでみたら12000個だった。
でも一つ目と二つ目の「ン」が入れ替わっても違うって判定されてた。
もっかい直してみる。

250:132人目の素数さん
09/04/28 20:04:30
> でも一つ目と二つ目の「ン」が入れ替わっても違うって判定されてた。 

てことは半分ってことではないのか?

251:132人目の素数さん
09/04/28 20:11:23
理屈の上ではそうなんだけど一応修正したらやっぱり6000個になった。

252:132人目の素数さん
09/04/28 20:30:46
「ン」「ー」が先頭に来ない場合の数は全部で
 5*7!=12600通り
「ンン」が並ぶ場合の数は、「ンン」を1組として
 5*6!=3600通り
「ンー」が並ぶ場合の数は、「ンー」を1組として
 5*6!=3600通り
「ンンー」が並ぶ場合の数は、「ンンー」を1組として
 5*5!=600通り
よって、12600-3600-3600+600=6000通り

間違ってたら悲しむ

253:132人目の素数さん
09/04/28 20:40:17
6000通りで正解です。出題者の私は、最初に、コイラドリの並べ方120通りに、ン2つ、ーを組み込むという考え方で計算しましたが。

254:132人目の素数さん
09/04/28 20:42:17
正八面体が存在することを示せ。

京大の入試だったような。

255:132人目の素数さん
09/04/28 20:45:00
場合の数だから賢い小学生なら解けちゃう

256:132人目の素数さん
09/04/28 21:15:15
条件数え落としてた。6000通りだね。
ただ、どこが面白い問題かはわからんなあ。
どこを面白いと思って出題したの?

257:132人目の素数さん
09/04/29 07:36:32
単なる重複順列じゃなくて、いろいろ条件が付くとこかな。

258:132人目の素数さん
09/04/29 23:05:48
>>254
模範解答よろ〜

259:132人目の素数さん
09/04/30 00:09:00
具体的に作ればいいんじゃないかな

260:132人目の素数さん
09/04/30 00:13:49
>>254
|x| + |y| + |z| ≦ 1

261:132人目の素数さん
09/04/30 00:33:57
正八面体のサイコロ買ってきて見せれば示した事にならないかな。

262:132人目の素数さん
09/04/30 00:44:10
>>261
その模型が正八面対であることを証明せねばならない

263:132人目の素数さん
09/04/30 15:48:46
正三角形4つと正方形1つで四角錐を構成して
それをふたつ用意し底面の正方形同士をくっつけたら
正8面体になることを利用すればいいんじゃないか?

四角錐の側面が互いに同相なのは自明として使っていいのかな?

上下にくっつけて(正8面体を作って)それを縦に切ってできた
四角錐が元の四角錐と合同だということを示すのはどうだろう?





264:132人目の素数さん
09/04/30 15:50:52
正6面体が存在することを仮定していいのなら
正8面体の構成はたいして難しくないが…

265:132人目の素数さん
09/04/30 15:54:08
>>263
>正三角形4つと正方形1つで四角錐を構成して
>それをふたつ用意し底面の正方形同士をくっつけたら

最初の正四角錐の頂点以外の頂点のまわりの面のなす角が等しいことを証明する必要がある。

266:132人目の素数さん
09/04/30 15:58:38
>>265
まさにそれを証明するのに、そこ以下が書かれているのだ。

267:132人目の素数さん
09/04/30 16:02:02
>>264
正6面体の存在は、高さが任意の正四角柱の存在を仮定すれば
そんなに難しくない。

268:132人目の素数さん
09/04/30 16:04:28
>>267
このあたりになると、何をどこまで仮定していいのか難しいな。
元の問題に、○○は仮定していいなどの記述がないと何もできん。

269:132人目の素数さん
09/04/30 16:06:33
空間中に任意の角度で任意の長さの直線が引けること
空間中に任意の平面が用意できること

さすがにこのくらいは仮定してよいだろう。

270:132人目の素数さん
09/04/30 16:09:05
正三角形や正方形の存在から証明かよ…

271:132人目の素数さん
09/04/30 16:44:29
二つの面が作る角度が180度未満になることも証明しないとな。

272:132人目の素数さん
09/04/30 17:03:57
正八面体は、普通にxyz空間上に座標をとって構成すればいいんジャマイカ

273:132人目の素数さん
09/04/30 22:47:28
ところで俺、正八面体って頂点の角度とか形が一定じゃないから、
正多面体の仲間に入ってるのに抵抗感じるんだけど。

274:132人目の素数さん
09/04/30 22:49:48
>>273
どういう意味ですか?

275:132人目の素数さん
09/04/30 22:52:27
カーボンナノチューブは正何面体の角を削るとできるか?


276:132人目の素数さん
09/04/30 23:33:34
>>254
1)答案用紙に展開図と投影図をいくつか書いておく。
 「こうやれば貴方にも正八面体が作れます!」とか。
2)三次元空間には正八面体が存在しえないと仮定して、なんらかの矛盾を導く。
3)正多面体の一般論を展開して、ハルヒにも出てきた多面体定理かなんかから、
 正八面体の存在を示す。l

・・・やっぱ1が一番簡単そうじゃね?

>>273
確かにそう見えるけど、目の錯覚だろ。
正六面体に内接するんだから…

>>275
チューブは無理だろ。鉛筆キャップみたいのもあるし。
C60 フラーレンのこと?

277:132人目の素数さん
09/05/01 03:00:28
>>276
2)が一番かっこよさそうなので、それでお願いします。

278:132人目の素数さん
09/05/01 11:31:55
>>273
なんかい見直しても一定だが。

279:132人目の素数さん
09/05/01 13:33:19
ここに縦が a、横が bの長方形の紙があります。この紙にハサミを入れて、
できる範囲の中で面積最大となる正三角形を切り取ります。
この切り取った正三角形の面積を Sとするとき、
この Sを a、bを使って表してください。

面積最大となる理由も併せてお答えください。

280:132人目の素数さん
09/05/01 14:21:40
面白い解法があるの?

281:132人目の素数さん
09/05/01 15:01:52
>>279
「面積最大となる理由」の部分を真面目にやると、結構面倒だな。

いくつかの補題を示して、可能性を絞り込む。
以下、正三角形は長方形の内部(周を含む)に含まれるものとする。

1)正三角形の3つの頂点のうち2つ以上が長方形の周上にないとき、その正三角形は面積最大ではない。
→それより大きい正三角形の存在を示す

2)正三角形の3つの頂点のうち2つのみが長方形の周上にあり、その2つは長方形の同一の辺上にはなく、互いに向かい合う辺上にもないとき、その正三角形は面積最大ではない。
→平行移動すると、3頂点とも周上にない正三角形になる

3)正三角形の3つの頂点のうち2つのみが長方形の周上にあり、その2つは長方形の互いに向かい合う辺上にあり、さらにそのうち少なくとも1つは長方形の頂点と一致するとき、その正三角形は面積最大ではない。
→長方形の頂点と一致する頂点を軸に回転すると、2頂点が周上にない正三角形となる

4)正三角形の3つの頂点のうち2つのみが長方形の周上にあり、その2つが長方形の互いに向かい合う辺上にあるとき、その正三角形は面積最大ではない。
→平行移動すると、3)の状態に

5)正三角形の3つの頂点のうち2つのみが長方形の周上にあり、その2つは長方形の同一の辺上にあり、さらにその2つのうちの少なくとも1つは長方形の頂点と一致しないとき、その正三角形は面積最大ではない。
→それより大きい正三角形の存在を示す

6)正三角形の3つの頂点がいずれも長方形の周上にあり、なおかつ長方形の頂点とは一致せず、さらにそのうちどの2つをとっても長方形の同一の辺上にはないとき、その正三角形は面積最大ではない。
→平行移動すると、3)の状態に

282:132人目の素数さん
09/05/01 15:44:23
abのどっちが長いかわからんが、
a>bなら
s = a * a√(3) / 2
a<bなら
s = b * b√(3) / 2
a=bならどっちでも可

じゃないの?

283:132人目の素数さん
09/05/01 15:55:25
>>280>>282
そんなに簡単な問題ではありませんよ

284:132人目の素数さん
09/05/01 16:36:06
結構昔に、どっかの国立大学の推薦入試で長方形の紙を渡されて、「折り目で出来るだけ大きな正三角形を作ってみて」と言われたヤツがいたのを思い出した。

285:132人目の素数さん
09/05/01 19:39:26
切り出した図形を組み合わせて作るとかはアリかな?
それなら
S = a * b
でもおk。

286:132人目の素数さん
09/05/01 19:49:38
はさみを入れて、だからそれもアリなのか?!

287:132人目の素数さん
09/05/01 19:53:07
>>285
具体的にどう鋏をいれるの?

288:132人目の素数さん
09/05/01 20:05:56
>>285
切った断片を張り合わせるのは無しです。

289:132人目の素数さん
09/05/01 20:14:29
普通に、縦が a、横が bの長方形の中に入る正三角形の最大面積 Sを求めてください。
>>282の回答は不正解です。

290:132人目の素数さん
09/05/01 20:34:31
場合わけ面倒なんで、縦a、横1,a>=1としてもいいかい?




291:132人目の素数さん
09/05/01 20:45:28
>>290
いいですよ

292:132人目の素数さん
09/05/01 21:07:21
>>282は条件入れ替えであってない?

293:132人目の素数さん
09/05/01 21:08:53
いや、あってないな
すまない

294:132人目の素数さん
09/05/01 21:10:50
>>292
どっちにしろ間違ってます

295:132人目の素数さん
09/05/01 21:26:58
なんか大学受験おもいだした。
とりあえず途中経過。

(1)a>=2*sqrt(3) の時
S=1/sqrt(3)

(2)1<=a<2*sqrt(3)の時、
a=tan(x)+cos(π/6+x)/cos(x)とおくと
S=sqrt(3)/(2*(cos(x)^2)

あとは式変形してSをaで表せればおkかのう。


296:295
09/05/01 21:29:24
あ〜最大になることはどうやって証明しよう…
意外と迷うな。

297:ルイス・キャラメル
09/05/01 21:58:34

ある日、花咲く森の中で、熊さんに出会ったときのこと。

そのとき、熊さんが「お逃げなさい」と言ったのに、

なぜだか、熊さんが あとから追いかけてくる。

というのは、数学的論理から考えれば

どのように説明できるのであろうかっ ?


298:132人目の素数さん
09/05/01 22:16:36
>>295
場合分けの境目は 2*√(3)ではないですよ
あと(2)のところはどうやって出したんでしょうか?
最終的に aを使った式で表してくれますか?

aと bを使うと対称性が見えて、よりきれいな式になるんですけど…

299:295
09/05/01 22:25:54
境目は2/√3かな。
まず、正三角形の一つの頂点が長方形の一つの頂点と重なってるとしても良い(と思う。証明はちょっと勘弁)
その重なった頂点で、正三角形の辺と長方形の辺のなす角度をxと置くと>>295のaとxの式が出てくる。

300:132人目の素数さん
09/05/01 22:27:34
>>297
熊さん「早く逃げるんだお嬢! 俺の理性が残っている内に・・・」

熊さんZ(理性崩壊)「うがあああぁぁぁあ!! 待てやこのアマァァアア!!!」

301:132人目の素数さん
09/05/01 22:45:08
黙れ

302:ルイス・キャラメル
09/05/01 22:57:44

熊さんが「お逃げなさい」と、言ったのを「正」とすれば

熊さんが追いかけてくるのは、どのように例えるかを

もっと、ふかく考えようよっ。


303:132人目の素数さん
09/05/01 22:59:32
>>299
その考え方で合ってます。境目もそれでOKです。
ただ、>>295のaとxの式がどうやって立てたのか…
たぶん僕のやり方と違う方法でやってるんですね。

一応、aと bを使った場合の答えを書いておきます。

bを固定して aの範囲を動かす
(1)a =< (√(3)/2)*b のとき、S = (1/√(3))*a^2
(2)(√(3)/2)*b =< a =< (2/√(3))*b のとき、S = √(3)*a^2 - 3ab +√(3)*b^2
(3)(2/√(3))*b =< a のとき、S = (1/√(3))*b^2

あとは(2)でそのような正三角形が必ず取れることと面積最大の証明です。

304:295
09/05/01 23:24:08
出来れば解きたかったが、明日早い&旅行いってしまうんでギブアップ。
他の人が解いてくれることを祈ってまつ。


305:132人目の素数さん
09/05/02 03:38:43
>>297
きっと、逃げ惑う少女を追い詰めて襲うシチュエーションが好きなんだよ、クマーさんは

306:132人目の素数さん
09/05/03 16:50:13
age

307:132人目の素数さん
09/05/04 02:01:39
ある任意の角を三等分する線を、
定規とコンパスだけをつかって作図する方法を示せ。

308:132人目の素数さん
09/05/04 02:10:27
最近このスレひどいな。悲しい。

309:132人目の素数さん
09/05/04 02:25:05
悲しむばかりじゃ能がないので、ちょっと気になった問題を転載。
スレリンク(math板:810番)

問:ふたつの三角形がある。
  それらの外接円の半径、内接円の半径 面積がそれぞれ等しい。
  このふたつの三角形は必ず合同といえるだろうか?

310:132人目の素数さん
09/05/04 03:17:49
>>309
おもしろそうですね、だが分からんぜ!

311:132人目の素数さん
09/05/04 08:29:48
>>309
確か三角形の三辺を a, b, c, 内接円・外接円の半径を r, R とすると
三角形の面積 S = (a + b + c) r / 2 = a b c / 4 R

ところで>>279で面積最大の証明はどうなったの?

312:132人目の素数さん
09/05/04 14:00:00
いえる。


313:132人目の素数さん
09/05/04 14:42:28
a_{n+1} = 1/2(a_n + 1/a_n) みたいな漸化式の問題知らん?
なんかあったよなぁと思いつつ、初項や係数とか間違ってたら解く過程で気づくだろうとか思ってたら
ぜんぜん手が進まん。

314:132人目の素数さん
09/05/04 14:49:51
>>313
とりあえずその漸化式はa_n=1/tanh(x_n)と置けば解ける。

315:132人目の素数さん
09/05/04 14:53:22
>>309
>>311さんのを借りれば
a+b+c=2S/r
ab+bc+ca=4Rr+r^2+(S/r)^2
abc=4RS
で三辺相等

316:132人目の素数さん
09/05/04 15:10:32
最小公倍数が720である相異なる3つの自然数の組は何通りあるか?

317:132人目の素数さん
09/05/04 15:35:11
>>315
>ab+bc+ca=4Rr+r^2+(S/r)^2
どうしてこうなるのか教えて下さい

318:132人目の素数さん
09/05/04 15:39:21
>>314
ありがとう。よく思いつくね。
でも想定していた解きかたと違うんだよなぁ。式が間違ってるのかなぁ。

>>317
ヘロンの公式を整理。

319:132人目の素数さん
09/05/04 16:08:09
>>313
 a_n = 1/tanh((2^n)x_0), n>0,
ここに、x_0 = (1/2)log|(1-a_0)/(1+a_0)|,
 |a_0| >1 のとき 1/tanh(x_0) = a_0,
 |a_0| <1 のとき 1/tanh(x_0) = 1/a_0,

320:319
09/05/04 16:20:06
>>313,318
 a_0 = ±1 のとき a_n = a_0,

321:132人目の素数さん
09/05/04 18:07:27
>>316

自信ないし、日本語変だけど・・・

720 = 2^4 * 5 * 9

なので、
相異なる数を、a, b, c,とすると、

(a,b,c ともに1以上720以下であり)
a は 「2^4」の倍数、・・・(1)
b は 5 の倍数・・・(2)
c は 9 の倍数・・・(3)
である。

また
「3つの数字が全て約数として『9^2』を持つ(・・・(5)とおく)」ことはない。
「3つの数字が全て約数として『 (2^4)^2 』を持つ(・・・(6)とおく)」ことはない。
「3つの数字が全て約数として『 5^2 』を持つ(・・・(7)とおく)」ことはない。

(1)を満たす a は、(2^4) * (5*9) = 720 なので、5*9 個存在
(2)を満たす b は、5 * { (2^4)*9 } =720 なので、{ (2^4)*9 } 個存在
(3)を満たす c は、9 * { (2^4)*5 } =720 なので、{ (2^4)*5 } 個存在
==
===========
よって、5*9と{ (2^4)*9 }と{ (2^4)*5 }をかけた値 マイナス
『(5)成立(6)不成立(7)不成立」+「(5)不成立(6)成立(7)不成立」+「(5)不成立(6)不成立(7)成立」』
===========

計算ギブ・・・。
でもスマートじゃないなー。てか、どっか見過ごしてる。

322:321
09/05/04 18:12:30
訂正

誤:
「3つの数字が全て約数として『9^2』を持つ(・・・(5)とおく)」ことはない。
「3つの数字が全て約数として『 (2^4)^2 』を持つ(・・・(6)とおく)」ことはない。
「3つの数字が全て約数として『 5^2 』を持つ(・・・(7)とおく)」ことはない。

正:
「3つの数字が全て約数として『9*2』を持つ(・・・(5)とおく)」ことはない。
「3つの数字が全て約数として『 (2^4)*2 』を持つ(・・・(6)とおく)」ことはない。
「3つの数字が全て約数として『 5*2 』を持つ(・・・(7)とおく)」ことはない。

---------------------------------------------------------------------

誤:
『(5)成立(6)不成立(7)不成立」+「(5)不成立(6)成立(7)不成立」+「(5)不成立(6)不成立(7)成立」』

正:『(5)不成立(6)成立(7)成立」+「(5)成立(6)不成立(7)成立」+「(5)成立(6)成立(7)不成立」』・・・(A)


323:132人目の素数さん
09/05/04 21:00:00
 (5^3−4^3)(3^3−2^3)(2^3−1^3)
−3(5^2−4^2)(3^2−2^2)(2^2−1^2)
+3(5^1−4^1)(3^1−2^1)(2^1−1^1)
−(5^1−4^1)(3^1−2^1)(2^1−1^1)
=7710。


324:132人目の素数さん
09/05/04 22:48:19
>>323
この愚か者めに日本語で解説おながいします!


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4769日前に更新/254 KB
担当:undef