面白い問題おしえて〜 ..
[2ch|▼Menu]
2:132人目の素数さん
07/07/06 09:02:00
過去ログ
URLリンク(www3.tokai.or.jp)
まとめwiki
URLリンク(www6.atwiki.jp)

1 スレリンク(math板)
2 スレリンク(math板)
3 スレリンク(math板)
4 スレリンク(math板)
5 スレリンク(math板)
6 スレリンク(math板)
7 スレリンク(math板)
8 スレリンク(math板)
9 スレリンク(math板)
10 スレリンク(math板)
11 スレリンク(math板)
12 スレリンク(math板)


3:132人目の素数さん
07/07/07 03:30:30
虚数i面体のサイコロをπ回振ったときの期待値を求めなさい

4:132人目の素数さん
07/07/07 04:26:17

('A` ) プウ
ノヽノ) =3'A`)ノ ヒャー>>3
  くく へヘノ

5:132人目の素数さん
07/07/07 06:06:25
虚数iとπを公式にあてはめればいいだろう?
何も屁をかますことはないと思うが…

6:132人目の素数さん
07/07/07 06:35:49
虚数面体ってなに?
明太子と関係ある?

7:132人目の素数さん
07/07/07 07:11:30
誰も丁度に書き込もうとしなかったな

8:132人目の素数さん
07/07/07 14:17:18
ゴルゴのような正確さでスルーにワラタ

9:132人目の素数さん
07/07/07 18:51:39
A君は最初にR^2内の(0,1)にいる
そしてサイコロを振っていき、
・1or2が出ればx座標+1、y座標+1の地点へ
・3or4が出ればx座標+1の地点へ
・5or6が出ればx座標+1、y座標-1の地点へ
という風に移動する
この移動を繰り返しy座標が0の地点に着いたらストップする
線分(0,0)-(0,1)とA君が通ったルート、x軸で囲まれる面積の期待値は幾つ?

10:132人目の素数さん
07/07/07 18:52:20
囲まれる面積→囲まれる領域の面積

11:132人目の素数さん
07/07/07 22:11:12
発散するんじゃないのか、これ?

12:132人目の素数さん
07/07/07 22:12:37
このスレを見ている人はこんなスレも見ています。(ver 0.20)
スレリンク(kankon板)l50x [生活全般]

13:132人目の素数さん
07/07/08 00:16:55
次は2008/08/08 08:08:08か。このスレなら射程距離だなw

14:132人目の素数さん
07/07/09 16:24:43
縦、横の長さがa,bである長方形Xを有限個の正方形A1〜Anに分割出来るとき、
a/bは有理数である事を証明せよ

15:132人目の素数さん
07/07/09 23:16:55
こりゃ難しそうだ。

16:132人目の素数さん
07/07/14 23:39:53
自作問題。

(1)f:[0,∞) → Rは2回微分可能であるとし、sup[x≧0]|x^2f''(x)|<∞であるとする。
さらに、任意のε>0に対してΣ[k=1〜∞]f(εk)(−1)^kが存在するとする。このとき、
lim[ε↓0]Σ[k=1〜∞]f(εk)(−1)^k=−f(0)/2 が成り立つことを示せ。

(2)g(x)=Σ[k=1〜∞](−1)^k/√(x^2+k^2) (x∈R)とおく。右辺の級数は任意のx∈Rで
収束することを示し、lim[x→±∞]xg(x)=−1/2となることを示せ(ある大学院入試の過去問より)。

(1)について…与えられた級数に形式的にε=0を入れると、f(0)(−1+1−1+…)となる。
適当な総和法では−1+1−1+…=−1/2となるので、、f(0)(−1+1−1+…)=−f(0)/2
となり、右辺に一致する。……この現象は偶然ではない。今、任意のε>0に対して
Σ[k=1〜∞]f(εk)(−1)^kの存在が保障されているので、アーベル総和法による
シグマ(これをA-Σと書く)でも同じ値になる。すなわち、
Σ[k=1〜∞]f(εk)(−1)^k=A-Σ[k=1〜∞]f(εk)(−1)^k
となる。sup[x≧0]|x^2f''(x)|<∞という条件は、この総和法の下でlimとA-Σの
順序交換が可能であることを保障する条件になっていて、
lim[ε↓0]Σ[k=1〜∞]f(εk)(−1)^k=lim[ε↓0]A-Σ[k=1〜∞]f(εk)(−1)^k
=f(0)A-Σ[k=1〜∞](−1)^k=f(0)(−1/2)
となる。(こんなことしなくても、(1)は解けます)。

17:132人目の素数さん
07/07/15 01:14:01
外接円の半径Rを〜まで読んだ

18:132人目の素数さん
07/07/15 02:28:46
>>17
つ眼科

19:132人目の素数さん
07/07/18 01:09:46
プロ野球の終盤になると安打を打つと打率が二厘上がり凡打だと一厘下がりますが
このことが始まるのは何打数からでしょうか?

20:132人目の素数さん
07/07/18 02:48:48
脳みそ沸いてるの?

21:132人目の素数さん
07/07/18 08:55:57
野球見ている奴って頭悪そうだな・・・

22:132人目の素数さん
07/07/18 09:04:16
おいおい、そういうことは答えてから言え

23:132人目の素数さん
07/07/18 15:28:56
これは流石に、答える前に言っても構わんだろう…

24:132人目の素数さん
07/07/18 15:33:26
打率10割の人は、なん打数目だろうともうそれ以上上がることはないな。
打率0の人は、なん打数目だろうともうそれ以上下がることはないな。

それ以上下がるって変な表現だな。

25:132人目の素数さん
07/07/18 15:43:27
たぶん、あくまで推測の話だが、
普通、打率は1/10000の位で四捨五入して出す。
なので>>19の言っていることには一定の解答を与えることは出来る。

しかし面白くはない。質問スレに持っていくべきだろう。

26:転載
07/07/21 19:18:19
三角形ABCの
Aを中心に半径Max(b,c)、
Bを中心に半径Max(a,c)
Cを中心に半径Max(a,b)
の3つの円を描くとき、それらの合併集合の面積を求めよ。

スレリンク(math板:499番)

27:132人目の素数さん
07/07/22 01:40:48
平面格子上をA=(0,0)をスタート、B=(n,m)をゴールとして通る経路を考える
線分ABに触れず(点A,Bは除く)に格子の辺のみを通ってゴールに至る経路で最短な奴の個数は幾つ?

28:132人目の素数さん
07/07/22 01:55:52
>>27
カタラン数の一般化ですな?
念のため訊いておくが、お主解答は用意出来て御座るか?

29:132人目の素数さん
07/07/22 06:36:00
>>26
正三角形の場合だけやってみた。
a^2*(11pi+3√3)/6

三角形ABCのAを中心に半径r(A).. として
r(A)=a, r(B)=b, r(C)=c
r(A)=c, r(B)=a, r(C)=b
etc とした方がきれいな結果になるような気がしないでもない。

30:132人目の素数さん
07/07/22 13:41:20
>>28
すいませぬ。n>mという条件付で
×線分ABに触れず(点A,Bは除く)に格子の辺のみを通って
○直線y=xに触れず(点Aは除く)に格子の辺のみを通って
だった

27だと階乗使うだけじゃ表せねぇ

31:132人目の素数さん
07/07/22 14:29:14
>>30
あーしてこーしてひっくり返すと
((n-m)/n)*C[n+m-1,m]

32:132人目の素数さん
07/07/22 16:34:56
>26

a≧b≧c としても一般性を失わない。
A,B,C を中心とする円を α,β,γ とすれば、
 (α∪β∪γ) = α + β + γ - (α∩β) - (β∩γ) - (γ∩α) + (α∩β∩γ),
 S(α) = πb^2,
 S(β) = S(γ) = πa^2,
 S(α∩β) = S(α∩γ) = f(a,b),
 S(β∩γ) = f(a,a),

【補題】
 0<r≦R とする。半径Rの円をC, その周上の点を中心とする半径rの円をcとすると,
 共通部分の面積 S(C∩c) は,
  f(R,r) = (π/2)r^2 + (2R^2 -r^2)・arcsin(r/2R) -r√{R^2 -(r/2)^2},
  f(R,R) = {(2π/3) - (√3)/2}R^2,

残った S(α∩β∩γ) をどうするかという問題。

33:132人目の素数さん
07/07/22 17:31:42
>>32
この問題ってa=BC, b=CA, c=ABってことでいいんだよね?

円と円の交点(一番外側にあるやつ)と、三角形の頂点を線分で結んでいくと、
4つの三角形と3つの扇形が出来る。
こっちのほうが楽でない?



34:132人目の素数さん
07/07/22 20:05:48
必要なのってヘロンの公式だけで、わからんスレにあったやつだし、普通に高1の数学じゃね?
結果出してないから何ともいえんけど、結果は綺麗にならない悪寒がする。

35:132人目の素数さん
07/07/22 20:20:37
>>34
やってから言えよ、ジジイ!

36:132人目の素数さん
07/07/22 20:36:57
>32

 S(α∩β) = S(α∩γ) = f(b,a),
【補題】は 0<r≦2R のとき。
r≧2R のときは πR^2 だった. スマソ.

37:132人目の素数さん
07/07/26 02:45:04
>26

>32,34 より、S(α∩β∩γ) を求めればよい。
α周,β周とγ周の交点をD,Eとおく。△BCEは正3角形。

まづ B ≧ π/6 のときを考える。
B ≧ π/3 -B = ∠ABE,
b = AC ≧ AE, Eはα内にある。
CAの延長とγ周の交点をA'とおくと、
α∩β∩γは2直線BC,CA'により3分割される。
α∩β∩γ = (筍形BCE) + (筍形A'CD) - (扇形A'CB),
S(α∩β∩γ) = (1/2)f(a,a) + (1/2)f(b,a) - (1/2)(a^2)C.

38:132人目の素数さん
07/07/26 03:46:02
なぜこの問題はマルチのみならず、マルチ進行が許されるのですか?
教えてください。夏だからですか?

39:132人目の素数さん
07/07/26 19:30:00
deg(f)=2.
deg(g)=2.
f(g(x))=x^4+x^3+x^2+x+1.


40:132人目の素数さん
07/07/26 23:12:11
>>39
解あるの?

41:132人目の素数さん
07/07/27 19:12:45
>37 の続き

B≧π/6 のときは
S(α∩β∩γ) = {(π/3) -(√3)/4 -C/2 +θ/2}a^2 + {(π/2)-θ}b^2 -(a/2)√{b^2 -(a/2)^2},
S(αUβUγ) = {(5/3)π +(√3)/4 -B -C/2 -θ/2}a^2 + {(π/2)-A+θ}b^2 +2Δ + (a/2)√{b^2 -(a/2)^2},
θ = arccos(a/2b), ΔはABCの面積。

>32, >36
S(α∩β) = (a^2)B + (b^2)A -2Δ,
だな。

42:132人目の素数さん
07/07/28 23:28:08
>41 の続き

 B≦π/6 のときは α周とβ周の交点をC,E'とする。E'はCとEの間にある。
 α∩β∩γ = (α∩γ) - (弓形CE') = (α∩γ) - {(扇形CAE') +2Δ -(扇形CBE')},
S(α∩β∩γ) = S(α∩γ) - {(b^2)(B+C) +2Δ -(a^2)B}.

ハァハァ

43:名無しさん@そうだ選挙に行こう
07/07/29 12:08:59
>42 の続き

 CE'は2つの円周に挟まれてるから「三日月形CE'」と言うべきだな。

44:名無しさん@そうだ選挙に行こう
07/07/29 15:27:51
>42 の続き

B≦π/6 のときは
 S(α∩β∩γ) = (B+θ)a^2 +(A-2θ)b^2 -2Δ -a√{b^2 -(a/2)^2},
 S(αUβUγ) = {(4/3)π +(√3)/2}a^2 = 5.05481560…a^2

45:132人目の素数さん
07/07/30 03:31:25
>44 の続き

B≦π/6 のときは
 α ⊂ (βUγ)
 α∩β∩γ = β∩γ
だな…

46:132人目の素数さん
07/07/31 01:27:57
>44 の続き

まちがえた…orz
B≦π/6 のときは
 αUβUγ = βUγ
だった…

47:132人目の素数さん
07/08/01 20:33:38
3乗して下3桁が777になるような整数は存在するか?

48:132人目の素数さん
07/08/01 20:38:27
753^3=426957777

49:132人目の素数さん
07/08/01 21:39:40
N,mを正の整数とし、nをNの桁数とする。
f(N,m)の値を以下の値で定義する。
「N^mを下からn桁ずつ区切っていき、それらの総和をf(N,m)とする。
n桁ずつ区切ったときに最上位の数字が0の部分は桁数がn未満の値として扱う」

(1)任意のnに対してf(N,2)=Nを満たすNが存在することを示せ。
(2)任意のnに対してf(N,2)=f(N,3)=Nを満たすNは存在するか?

50:132人目の素数さん
07/08/01 22:08:38
>>49
問題の意味を俺が理解できているか確認したいんだけど、例えば
f(101,3)=1+30+301=332
ってことでよい?

51:49
07/08/01 22:17:32
>>50
それでOKです。
理解が早くて助かります。

52:49
07/08/01 22:23:57
すいません、一つ追加です
(1)は「二つ以上存在」にしてください。10^k-1以外にも存在することを示す感じで。

53:50
07/08/01 22:29:12
>>49
ありがとう。チャレンジしてみるよ。

54:132人目の素数さん
07/08/04 02:16:42
n!を10進法で表記したとき、それを1の位から見ていき、初めて0でない数が現れた
ところで、その数をf(n)と書く。たとえば
4!=24なのでf(4)=4
5!=120なのでf(5)=2
10!=3628800なのでf(10)=8
となる。自然数nの5進方表示n=納i=0〜u](5^i)aiを与えたとき、
納i=1〜u]i*ai≡t (mod 4)となる自然数tを1つ選べば、
{au!a(u−1)!…a1!a0!}2^t の1桁目の数字がf(n)になっていることを示せ。

55:132人目の素数さん
07/08/04 02:30:50
例:
n=21のとき、5進法でn=納i=0〜u](5^i)ai , u=1 , a0=1 , a1=4
と表せる。納i=1〜1]i*ai≡t (mod 4)となるtはt≡1*a1=4≡0 (mod 4)なので、
t=4が選べる。このとき{au!a(u−1)!…a1!a0!}2^t=4!1!2^4=24*16 なので、
この数の1の位は4となり、f(21)=4となる。
直接求めると、21!=51090942171709440000であるから、f(21)=4である。

56:132人目の素数さん
07/08/05 00:50:58
>>49の(1)をやってみた(出来てないけど)

p=10^nとして
   N^2=ap+b, f(N,2)=a+b=N
の2式から
   a=N(N-1)/(p-1), b=N(p-N)/(p-1)
となる。a, bが整数であるためには、
   N(N-1)≡0 (mod p-1)…(*)
を満たす必要がある(p≡1 (mod p-1)だからbから来る式はいらない)。
任意のnに対して、(*)を満たす10^{n-1} ≦ N < 10^nなるNがあれば万事OK。

p-1以外のNということで、n≡±1 (mod 3)の時は、I=(p-1)/9, d=1,2,...,8として
   N = dI for n≡1 (mod 3)
   N = dI+1 for n≡-1 (mod 3)
がある。ただし、dはnに応じて適当に選ぶ必要がある。だけどn≡0 (mod 3)はこのゾロ目形は通用しない。無念。

詳しくないので(*)の一般的な解法があるのか知らぬ。

57:56
07/08/05 00:56:13
後半の(mod 3)は全部(mod 9)だった。

58:56
07/08/05 01:05:05
簡単に修正しようとして失敗した。

I=(p-1)/9として、n≡1,2,4,5,7,8 (mod 9)の時はd=1,2,...,8を適当に選んで
   nd≡1 (mod 9)と出来る場合 N = dI
   nd≡-1 (mod 9)と出来る場合 N = dI+1
とすればOK。
だけどn≡0,3,6 (mod 9)のときはゾロ目形は通用しない。

59:132人目の素数さん
07/08/05 01:37:36
>>49
(1) N=99・・・9 (n桁)=(10^n)-1は条件を満たす。
実際,N^2=10^(2n)-2*10^n+1において,
下n桁は1,その後のn-1桁は99・・・8 (=10^n-2)なので
それらの和は(10^n)-1=N

60:132人目の素数さん
07/08/05 01:41:23
>>49
(2) 存在しない。
f(2,N)=Nより,N=(10^n)-1と書かれることが必要。
ところがn=1のとき,N=9だが,N^3=729となり,f(3,N)=18≠N

61:132人目の素数さん
07/08/05 02:05:42
>>59
(1)に限っては、>>52で99・・・9 「以外でいつでもあるか」と言ってるよ。

>>60
>f(2,N)=Nより,N=(10^n)-1と書かれることが必要。
その必要は無いよ。
それと(2)では(1)と違って、その形であっても存在すればOKと出題者は言いたいのだと思う。

俺の計算機がしょぼいので、ここまでしか確認できてないけど、
f(N,2)=N
1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4950, 5050, 7272, 7777, 9999, 17344, 22222…
f(N,3)=N
1, 8, 10, 45, 297…

ちなみに俺は>>56だけど、n≡0,3,6 (mod 9)のとき、(1)を満たすNが無いと言いたいのではなくて、どのような形になるかわかってないと言いたかった。
(もちろん俺は出題者じゃないからね。誤解無いように。)

62:132人目の素数さん
07/08/05 04:37:36
単位円がある。Pの後の「_n」は添え字を表すものとする。

OP_1がx軸の正の向きとなす角がθ(0<θ<π/4)となるような点P_1をとる。
∠OP_1P_2=θとなるような点P_2をとる。
∠P_1P_2P_3=θとなるような点P_3をとる。
∠P_2P_3P_4=θとなるような点P_4をとる。

・・・以降同様に、∠P_(n-1)P_(n)P_(n+1)=θとなるような点P_(n+1)を順次とる。

ただし∠P_(n-1)P_(n)P_(n+1)は線分P_(n-1)P_(n)について、∠P_(n-2)P_(n-1)P_(n)と同じ側にある(同位角)とする。

P_(n)の座標をθを用いて表せ。

問題を思いついただけで答えがわからん。考えたけど面倒でやめたから後は任せた。

63:132人目の素数さん
07/08/05 04:43:37
>>62
>問題を思いついただけで答えがわからん。考えたけど面倒でやめたから後は任せた。

ふざけんなwww
他所にそれ相応のスレがある。

64:132人目の素数さん
07/08/05 05:51:28
>>63
え、このスレって答えも用意してないとダメなの?

正直スマンカッタ。問題ごと忘れてくれ。

65:132人目の素数さん
07/08/05 06:24:58
>>64
いや、答えがわからなくてもいいとは思うが、
>考えたけど面倒でやめたから後は任せた。
というところに突っ込みたくなった。それでは面白いかどうかわからないでしょ?


66:132人目の素数さん
07/08/05 06:32:47
>>65
別の問題を考えていた時に、ふと思いついた図形から考えてみた。グラフィカルに面白いと思ったから出してみただけ。そういう意味じゃないって?

いずれにしても答えはわからなかった。軟弱な俺を許して。

67:132人目の素数さん
07/08/05 07:28:50
>>>62
P_3の取り方に(一般性を失う)2通りあるでしょ。そこら辺ちゃんと考えてるの?

68:66
07/08/05 07:31:27
ていうかP_(n)が円周上の点だと明示してなかったorz

今何とか考えてみたらこうなった。

P_(2n)=((-1)^ncos(2n+1)θ,sin(2n+1)θ)
P_(2n+1)=(cos(2n+1)θ,sin(2n+1)θ) ただしn=0の時P_(0)は定義しない。

69:66
07/08/05 07:35:03
>>67
意味わからない。どういうこと?

70:132人目の素数さん
07/08/05 09:40:55
知将

71:132人目の素数さん
07/08/05 09:58:27
>>56
>   N(N-1)≡0 (mod p-1)…(*)
N^2 ≡N (mod p-1)
N と p-1 の最大公約数を q とすると
N ≡1 (mod (p-1)/q)
N ≡0 (mod q)
の二本の式が出てきて、中国剰余定理からp-1未満の
整数解の存在は保証される。
そして、そのNがf(2,N)=Nを本当に満たしているって言うのは
不等号ではさんでゴニョゴニョスればいいはず。
というか、ここまでは前スレの終わりに出てた問題と一緒でしょう。

(2)は繰上りとかがうまく処理できなくて難しいね。

72:66
07/08/05 15:55:37
>>70
多分俺に言ってるんだと思うけど、罵るのはいいからさあ・・・教えて欲しいのよ、こっちは。

まあ、よく考えたら大して面白い問題でもなさそうだったからスルーでもかまわないが。

73:132人目の素数さん
07/08/05 22:33:36
>>72
簡単 かつ つまらない かつ 解答も考えずに書き込んだお前は屑だ!
100年ロムって、そのままs…

74:132人目の素数さん
07/08/05 22:37:21
100年と言わず、半万年ろm(ry

75:132人目の素数さん
07/08/06 01:14:47
半径rの球面上にn個の点(a1,a2,...,an)を配置するとき、
ある1点akと他の点間の各距離の最小値をdkとする。
n=5のとき、d1+d2+d3+d4+d5の値が最大となる配置はどのような配置か?

長年疑問だったのでお尋ねします。

76:132人目の素数さん
07/08/06 01:38:55
mathnoriの問題か?

77:132人目の素数さん
07/08/06 08:57:51
>>62の反省を生かして別問題を作ってみた。答えも用意してあるが、後に公開するそれが間違ってたら指摘を求む。

原点をOとし、0<θ<π/2とする。Pの後の「_n」は添え字を表すものとする。

線分OP_1がx軸の正の向きとなす角がθとなるような点P_1をとる。
次に線分P_1P_2が線分OP_1の延長の正の向きとなす角が2θとなるような点P_2をとる。
次に線分P_2P_3が線分P_1P_2の延長の正の向きとなす角が3θとなるような点P_3をとる。

・・・以下同様に、線分P_(n)P_(n+1)が線分P_(n-1)P_nの延長の正の向きとなす角がnθとなるような点P_(n+1)を順次とっていく。

(1)OP_(n)の座標を、θを用いて表せ。

(2)P_4がy軸上にあるようなθの値を求めよ。

(3)θが(2)で一義的に定まる時、P_4のy座標を求めよ。
定まらない時は、最も小さなθに対応する点P_4を点A、最も大きなθに対応する点P_4を点Bとし、線分ABの長さを求めよ。

なお、既知の角度が求められない場合は三角比の表を用いるなどして良い(注:ここだけ美しくなくて残念)。

78:132人目の素数さん
07/08/06 09:03:55
>>77
また一つ書き忘れたおバカな俺。「線分P_(n)P_(n+1)の長さはいずれも1とする。」これがなきゃ解けねーよ。

79:132人目の素数さん
07/08/06 11:12:22
A[n+2]=(4n+2)A[n+1]+A[n]
B[n+2]=(4n+2)B[n+1]+B[n]
A[1]=1、A[2]=3
B[1]=1、B[2]=1
を満たすA[n],B[n]においてA[n]/B[n]の極限値を求めよ。

80:75
07/08/06 13:01:20
>>76
問題背景は金属錯体化学です。球面縛りはこれが由来です。

中心に金属原子を持ち、その周りに幾つかの原子団(配位子)
が結合(配位)したものを金属錯体と言います。

金属原子に配位したそれぞれの配位子はお互いの立体反発を小さくするような
空間配置をします。

4つの配位子がある場合、正四面体の頂点(平面正方形となる場合もあります)
6つ場合、正八面体の頂点となるような配置になります。

5つの場合は、中心金属を含む平面内に正3角形の頂点をなすように3つ、
残りの2つはその平面と垂直になり、中心金属を通る直線上にとります(三方両錐型)。

数学的に考えて、三方両錐型が一番反発の少ない構造なのかを
知りたくて出題させて頂きました。

数学素人の問題ですがお願いします。
類似の問題がありましたら教えてください。

81:132人目の素数さん
07/08/06 13:15:22
>>78
糞して寝ろ! (゚Д゚)≡゚д゚)、カァー ペッ!!

82:132人目の素数さん
07/08/06 17:30:01
(゚Д゚)

83:132人目の素数さん
07/08/06 22:16:32
>>77
とりあえず2分くらい考えただけだが
(2)π/9,π/7,π/4,π/3,3π/7
(3)2sin3π/7-√3

あってるかどうかとか解説とか、そういうレスはなくていいです

84:132人目の素数さん
07/08/06 22:16:48
>>80
立体反発というのがどういうものか知らないんだけど、
問題>>75の「距離の和」が関係してるの?

むしろそっちのほうが気になってしまうやつがここにいる。

85:132人目の素数さん
07/08/06 22:58:42
距離の二乗の和?

86:132人目の素数さん
07/08/06 23:15:59
>>83
解説は不要とのことなので、感想だけ。

2分でよく答えをはじき出せたねえ・・・。問題として面白いかとか、自分もちゃんと解けるかどうかとかを考えてたら2時間以上かかったよ。

87:132人目の素数さん
07/08/06 23:56:44
>80
 それだったら、静電エネルギーを最小にするんぢゃね?
 Σ[1≦i<j≦n] 1/d(i,j) → min.

88:83
07/08/07 00:04:41
>>86
あ、すいません。解説っていうのは回答に対する考察のことで、問題の解説はほしかったり。
ほとんど当て推量で、
10-1=6+3=9
10-3=6+1=7
10-6=3+1=4
の最右辺の値を分母でcosに持っていけば大丈夫だろうくらいしか考えてませんでした。
ただ一般化はしにくいかも知れませんね。東工大でこのままありそうな問題って感じで。
あと(3)はなんか意味のある問題だったり?

89:87
07/08/07 00:34:28
>80
 3方両錐型のとき
  Σ[i<j] 1/d(i,j) = 6/(a√2) + 3/(a√3) + 1/(2a) = 6.4746915…/a. (たぶん最小)

90:75
07/08/07 00:42:56
>>84,85,87
レスありがとうございます。

イメージとして個々の点の持つ「縄張り」ができるだけ均等になるのは
どのような常態かが知りたくて>>75のような問題文になってしまいました。

この「縄張り」の定義があいまいな為、混乱を招いてしまったと思います。


球面ではなくて円周にした場合、点が幾つであろうと等間隔に
点を円周上に並べれば、各点間の反発が均等になります。

これが球面になるとどうなってしまうのか?
とくに対象性の悪い数の場合はどうか?
が知りたくて出題しました。

91:75
07/08/07 00:57:39
>>89
解答ありがとうございます。
各点間の距離の逆数の和が三方両錐型の場合に最小に
なることの証明は難しいのでしょうか?

92:132人目の素数さん
07/08/07 01:05:30
>>89
6.4746915
をぐぐったら Distributing n Charges on a Sphere
URLリンク(tracer.lcc.uma.es)
なんてページが出てきた。

93:75
07/08/07 01:09:35
連投で申し訳ないです。
各点に立体角を割り振るようなうまい定義
ができていないのがダメですね。

94:75
07/08/07 01:14:31
>>92
面白いページですね。
5つのときはやはり三方両錐型ですね。

95:132人目の素数さん
07/08/08 00:24:02
>>88
勘違いすみませぬ。

(1)P_(n)の座標はベクトルを用いて↑OP_(n)=↑OP_(n-1)+↑P_(n-1)P_(n)と表せる。これを用いれば
↑OP_2=↑OP_1+↑P_1P_2=(cosθ,sinθ)+(cos(θ+2θ),sin(θ+2θ)=(cosθ+cos3θ,sinθ+sin3θ)
↑OP_3=↑OP_2+↑P_2P_3=(cosθ+cos3θ,sinθ+sin3θ)+(cos(θ+2θ+3θ),sin(θ+2θ+3θ)
=(cosθ+cos3θ+6θ,sinθ+sin3θ+6θ)
以下同様にすれば
↑OP_(n)=↑OP_(n-1)+↑P_(n-1)P_(n)=(納k=1,n]cos(k(k+1)θ/2),納k=1,n]sin(k(k+1)θ/2))
・・・確かに成り立つかどうかの吟味って必要かな?

(2)P_4がy軸上にある、つまりx座標が0であるから、cosθ+cos3θ+6θ+cos10θ=0。
変形すると-4sin2θsin(9θ/2)cos(7θ/2)=0であり、0<θ<π/2よりsin2θ≠0なので
sin(9θ/2)cos(7θ/2)=0。これを満たすθは0<θ<π/2において、θ=π/9,π/7,3π/7,4π/9 の4つ。

(3)(2)で求めたようにθは一つだけではないから、最小のθに対応する点P_4つまり点Aのy座標は
となる。これはsin(π/7)+sin(3π/7)+sin(6π/7)+sin(10π/7)=2sin(2π/7)である。

最大のθに対応する点P_4つまり点Bのy座標はsin(2π/9)+sin(6π/9)+sin(12π/9)+sin(20π/9)=2sin(2π/9)である。
したがって、線分ABの長さ=2sin(2π/7)-2sin(2π/9)=2sin(π/63)≒0.997。

>あと(3)はなんか意味のある問題だったり?
別にあまり意味は無い。本当はθは一つに定まると思ってた(このへんが浅はかだなあ)から、
それに対応する点の座標を求めるだけのつもりだった。しかし一つには定まらないことに気づいてから、
「だったら複数の点の座標を求め、それが作る多角形についても問題にしよう。」と考えた。

さらに言えば、「どうせθは一つには決まらないんだから、P_4がx軸上にある場合も問題にしてやれ。」
との考えにいたった。それぞれで題意に沿う最小および最大のθに対応する4点を定めて、それが作る台形の
面積を求めるつもりだった。でも自分が大変なのでやめた。時間と気力があったらやってみてね。

96:132人目の素数さん
07/08/08 03:47:31
2^186+1/65 が整数であることを証明せよ。

97:132人目の素数さん
07/08/08 08:34:43
(2^186+1)/65?

98:132人目の素数さん
07/08/08 17:44:15
以下65を法とする
2^6≡64≡-1
2^186≡(2^6)^31≡(-1)^31≡-1
2^186+1≡-1+1≡0

99:132人目の素数さん
07/08/09 11:11:31
自作問題。

(1)f:(-1,1)→Rは次の条件を満たすとする。
・fは(-1,1)上でC^1級である
・|f'(x)|<1 (-1<x<1)が成り立つ
・f(0)=0である
このとき、任意のa∈(-1,1)に対してlim[n→∞]f^n(a)=0が成り立つことを示せ。
ただし、f^n(a)=f(f(…f(a))) (fをn回合成した関数)とする。

(2)f:(-1,1)→Rは次の条件を満たすとする。
・fは(-1,1)上で微分可能である(しかしC^1級とは限らない)
・|f'(x)|<1 (-1<x<1)が成り立つ
・f(0)=0である
このとき、任意のa∈(-1,1)に対してlim[n→∞]f^n(a)=0が成り立つことを示せ。
ただし、f^n(a)=f(f(…f(a))) (fをn回合成した関数)とする。

100:89
07/08/11 01:17:39
>92

ddクス

nが小さいところでは
n=2, 直径,   f(2) = 1/2, a=2,
n=3, 正3角形, f(3) = √3, a = √3,
n=4, 正4面体, f(4) = (3/2)√6, a = √(8/3),
n=5, 三方両錐, f(5) = (1/2) + 3√2 + √3, a(ax)=√2, a(eq)=√3, 
n=6, 正8面体, f(6) = (3/2) + 6√2, a=√2,
n=7, 五方両錐, f(7) = (1/2) + 5√2 + 5√{(5+√5)/10} + 5√{(5-√5)/10}, a(ax)=√2, a(eq)=√{(5-√5)/2},
n=8, 捩れ正方形柱, f(8) < 2 + 6√3 + 3√6, (square anti-prism),
 a(top) = a(bot) = 1.171247738380718…, a(side) = 1.28769352633104…,
n=12, 歪20面体, f(12) < -12 +15√5 +15√{(5+√5)/2},
n=20, 歪12面体, f(20) < 5 +30√3 +15√6 +15√15,
かな。

n=8,12,20 では正多面体からずれている。ヤーン・テラー効果?


101:89
07/08/11 01:51:01
>80

平面正方形では, f(4) < 1+2√2, a=√2,

でつが実在しまつね。

軌道函数どうしの重なり積分が≒0 となる必要があるので、結合角にも制約があり…
静電エネルギーだけで決まる訳ぢゃね…

102:132人目の素数さん
07/08/24 16:36:07
ほしゅ

103:132人目の素数さん
07/08/25 18:24:43
ひまでしたら解いてみてください
6桁の自然数ABCDEFは3桁の自然数ABC*DEFで割り切れる。
6桁の自然数ABCDEFをいくつか見つけてください。

104:132人目の素数さん
07/08/25 19:27:36
ポテンシャル問題でしょ、普通に解けば?ラグランジェとかで?


105:132人目の素数さん
07/08/25 19:32:34
V=eiej/dij
dij=d(ri-rj)
d(ri)=d(rj)
G=V-sjd(rj)


106:132人目の素数さん
07/08/25 22:15:04
>>103
143143 = 143*1001 = 143*143*7
167334 = 167*1002 = 167*167*6

この問題には深い意味ありますか?ただいま検討中。

107:132人目の素数さん
07/08/25 22:34:39
>>104
さすがに (5-1)*2=8 の変数を単純計算では、取り付く島もなかろう。
せめて対称性を分析してからでないと。

108:132人目の素数さん
07/08/26 12:03:50
次の数式は何故そうなるのかわかる方どなたかご教授ください。

鉱山を営むとする鉱業権は、次により評価する。

(1) 操業している鉱山の鉱業権の場合
a×(1/(s+(r/((1+r)^n−1))))−E
(1+r)の後はn乗です。

a 鉱山が毎年実現しうる純収益 
s 報酬利率 9パーセントから15パーセントまでの間において適正に定めた率
r 蓄積利率
n 可採年数 
E 今後投下されるべき起業費の現在価額


(2) 未着手のまま据置期間のある場合の鉱山の鉱業権の場合
(1/(1+r)^m)×a×(1/(s+(r/((1+r)^n−1))))−E
(1+r)の後m乗、  (1+r)のあとn乗

m 据置期間
a、s、r、n及びE (1)に定めるとおりとする。

(3) 開坑後予定収益を生ずるまでに期間のある場合における鉱業権の場合
a×(((1+r)^n−1)/(r+s{(1+r)^n+m−1}))−E

(1+r)のあとn乗、(1+r)のあと n+m乗

m 補償時から予定収益を生ずるまでの期間
a、s、r、n及びE (1)に定めるとおりとする。

どなたかわかる人がいればご教授ください。比較級数の和の公式のようにも思えるし、複利計算の式にも思えるし・・・悩み中です。

109:132人目の素数さん
07/08/26 12:51:28
>>108
マルチ

110:132人目の素数さん
07/09/19 23:53:54
ほしゅ

111:132人目の素数さん
07/09/23 17:10:38
転載。
スレリンク(math板:22番)

半径r の円の中で一回に距離1だけ(好きな方向に)逃げたり
追いかけたりすることが出来る鬼ごっこをするとします。 
最初に、鬼は中央に子は円周にいるとして先に子が逃げるとします。
さて、半径rがある程度大きくなると永遠に逃げ回ることが
可能になるのでしょうか?それとも絶対に捕まるのでしょうか?

また、円以外の閉領域で上の鬼ごっこをするときに
必ず捕まる条件みたいなのは計算可能でしょうか?

112:132人目の素数さん
07/09/23 23:55:07
>111
 鬼は子の方向に追いかけるとする。距離RがR-1になる。
 子が鬼の反対側に逃げた場合には距離がRに戻る。しかし θだけ逸れると
 R - √{R^2 -2(R-1)(1-cosθ)} ≧ (R-1)(1-cosθ)/R だけ近づく。


113:132人目の素数さん
07/09/24 02:14:06
鬼が子の方向に必ず1進めるわけではないので
かならずそれが適応できるわけではない。

114:132人目の素数さん
07/09/24 02:16:23
ああ、ごめん。ルールを勘違いしてた。 交互に逃げたり追ったりするんだね

115:132人目の素数さん
07/09/24 10:16:51
そもそも永遠に逃げられるパターンが思いつけない。

116:132人目の素数さん
07/09/24 11:11:50
(1) 正方形を合同でない二つの相似な図形に分割せよ
(2) 正三角形を合同でない二つの相似な図形に分割せよ
(3) 円を合同でない二つの相似な図形に分割せよ

117:132人目の素数さん
07/09/24 13:18:23
>>115
任意の凸領域(任意の二点を結ぶ線分がその領域内を通るもの)は毎回、鬼が子の方向に進んでいけば距離が小さくなっていく。
よってずっと逃げ回るためには境界が凹領域のところ(つまり、穴というか進入禁止領域)があることが必要。
それでは、どれだけの大きさの穴があれば逃げ回れるのでしょうか?

球面とか、トーラスのように境界がない曲面も逃げ回ることが出来る大きさの最小値がありそう。

118:132人目の素数さん
07/09/24 13:23:22
>>116(1)これでどうだ! 文句あるか!

■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■■■■■■■■■■■■□□□□
■■■■■■■■■■■■□□□□
■■■■■■■■■■/□□□□□
■■■■■■■■■■□□□□□□
■■■■■■■■□□□□□□□□
■■■■■■■■□□□□□□□□
■■■■■■■■□□□□□□□□
■■■■■■■■□□□□□□□□

(/の部分は、フラクタル)


119:132人目の素数さん
07/09/24 14:02:17
>>118
フラクタルはダメです
曲線でわけても結構です

120:132人目の素数さん
07/09/24 14:04:07
>>118
相似にならねえじゃん

121:132人目の素数さん
07/09/24 17:48:20
>>116
(1)と(3)は思いついたが(2)が思いつかん。

122:132人目の素数さん
07/09/24 17:49:06
>>120
なるだろ。

123:132人目の素数さん
07/09/24 17:49:24
>>121
解答頼む

124:132人目の素数さん
07/09/24 17:50:34
あ、(2)もできた。

125:132人目の素数さん
07/09/24 17:54:22
結局フラクタルな図形以外でできるのか?

126:121,124
07/09/24 18:19:14
自分が考えたのもどれもフラクタルな図形です。
そうでないのは出来るんだろうか?

127:132人目の素数さん
07/09/24 18:23:40
>>122
ならねえよ

128:132人目の素数さん
07/09/24 18:24:54
>>122
デカい方が角が2つ多いだろ。

129:132人目の素数さん
07/09/24 18:29:20
誰か>>79教えて〜

130:132人目の素数さん
07/09/24 18:32:05
>>128
まず「フラクタル」について調べてから言え。

131:132人目の素数さん
07/09/24 18:32:43
>>127
フラクタルの意味はわかった上で、ならないと言ってるのか?

132:132人目の素数さん
07/09/24 18:46:34
フラクタルはダメって言われてるのにフラクタルにこだわる奴ら

133:132人目の素数さん
07/09/24 18:51:03
条件からはずれたところで揉めるなよ、おまいら。

しかし、フラクタルがダメとなると、4つの角のうち2つずつ引き受けねばならなくなってしまいそうだけどなあ。
でも、そうすると相似に出来ねえし。可能なのか?

134:132人目の素数さん
07/09/24 19:47:11
フラクタル無しは厳しいな。
でも円はフラクタルありでも厳しいな
>>121さん、もし良かったら教えて

135:132人目の素数さん
07/09/24 21:05:47
点でしか接していなくてもひとつの図形としていいなら
円もできたんだが、それでもいいだろうか?

もちろんフラクタル図形。

136:132人目の素数さん
07/09/24 21:20:00
(0-1)+(2-3)+(4-5)+....
(1-2)+(3-4)+(5-6)+....


137:132人目の素数さん
07/09/24 21:54:06
>>135
もしかして三日月がたくさんくっついたような形?

138:132人目の素数さん
07/09/24 22:06:36
>>137
全然違う

139:132人目の素数さん
07/09/24 22:17:49
>>137
135ですが、そうです。

140:132人目の素数さん
07/09/24 22:19:35
>>119
それ以前にフラクタル不使用の解答ってあるの?
ない場合、できない証明をすれば正解かな?
挑戦してみよう。

141:132人目の素数さん
07/09/24 22:33:18
円の場合について考えたんだが
小さいほうの図形が円の外周を含むとしたらそれは連続した曲線としては含めず
また1点でしか含めないんではないかと思う。
連続した曲線として含んでも、2点以上含んでも、大きいほうの図形が構成できない。

つまり、小さいほうの図形の外周は、一点を除いて円の内部になければならない。
そしてその外周は、大きいほうと相似なのだから円形でなくてはならない。

てことは、>>137で言うような点で接するような図形を考えない限りは
ふたつの非合同な相似形には分割できない。

小さいほうが大きいほうの内部に含まれるような図形は自己相似形なので
フラクタルを禁止したら、この分割は出来ないということになる。

ぜんぜん厳密じゃないけど、どう?

142:132人目の素数さん
07/09/25 06:54:04
切ってから組みなおすのではなく、最初からブッツリと二つにしないとけないのだろうか?
幾つかに切り離していいなら、例えば(1)なら
辺の長さが√5の正方形を5つに切り離して、辺の長さが1と2の正方形を作るという話はよくあるが…

143:132人目の素数さん
07/09/25 11:29:54
それはそれで考え進めていいと思う。

144:132人目の素数さん
07/09/25 13:11:20
切り離して組み合わせていいなら、正方形と三角形は簡単なんじゃないか?

145:132人目の素数さん
07/09/25 21:04:25
>>136
これ問題? 「振動する」でいいんじゃない?
その他細かい条件があるのかは知らないけど

146:132人目の素数さん
07/09/25 21:16:49
有限個に切り離して、組みなおしてもよいなら
(i) 長辺/短辺 > 2 の長方形を作る(長辺/短辺 ≦ 2 になってしまったら、また半分に切って組み直す)。
(ii) 長辺/短辺 > 2 の長方形は、長辺の適切な場所で、長辺に垂直に切れば、合同でない相似な二つの長方形に分けられる。
円をこの話に帰結できるかは分からないが。

やっぱり自己相似を使わず、さらに組みなおすこともなく、ということだろう。たぶん

147:132人目の素数さん
07/09/25 21:34:36
んなややこしく考えなくても、組み直していいなら5*5に分けて3*3と4*4にするとかでいいじゃん。
三角形も25分割して16と9で出来るな。

148:132人目の素数さん
07/09/25 21:41:07
…まあ…正多角形なら全部これで片付くということで、目をつむってくれや

149:132人目の素数さん
07/09/25 21:49:33
いくら分割してもよく、組みなおしていいなら楽勝だろう・・・。

150:132人目の素数さん
07/09/25 23:17:20
正方形を中心を通らずに合同な図形に二分割って出来る?

151:132人目の素数さん
07/09/26 00:02:35
出来ぬ

152:132人目の素数さん
07/09/26 10:12:44
>>117
穴があいていなくとも、たとえば半径3くらいの円板でも、
「子は円周を一定方向に回り続け、鬼はそれを馬鹿正直に追跡する」
というアルゴリズムでは、鬼の軌道は円周に漸近してくだけで
追いつけない気がする。つまり、鬼と子の距離は単調減少するが
0には収束しないという状況が起こりうるのではないか。

もちろん、鬼に先回りなどの知能を搭載すれば話は変わってくるけど。

153:132人目の素数さん
07/09/26 10:54:36
1,2,3,...,L[mm]の長さの
L種類の棒を縦に並べて
きっちりL[mm]の長さにするには
何通りの場合があるか?
同じ長さの棒は何度でも使え、
区別もしないとする。

154:132人目の素数さん
07/09/26 16:46:27
>>153
2^(L-1)

155:132人目の素数さん
07/09/26 16:47:57
>>153

L種類の棒で作られるL[mm]の長さが何通りあるかを f(L)で表す。

L=1のとき、 明らかに1mmの棒が一本の1通りである。

L=n (ただしn>1) の場合について考える。
一番上になる棒の長さが1であるものは f(n-1)の上に長さ1の棒を重ねたものと等しい
一番上になる棒の長さが2であるものは f(n-2)の上に長さ2の棒を重ねたものと等しい
一番上になる棒の長さが3であるものは f(n-3)の上に長さ3の棒を重ねたものと等しい

一番上になる棒の長さがL-1であるものは f(n-(L-1))の上に長さ(L-1)の棒を重ねたものと等しい
一番上になる棒の長さがLであるものは1通り
なので
f(L) = Σ_[k=1.Ln-1]{f(k)} + 1 = 2^n-1

この式は L=1のときにも f(L) = 2^n-1 =2^1-1 = 1 なので 当てはまる。


156:132人目の素数さん
07/09/26 16:50:50
下2行訂正

f(L) = Σ_[k=1.Ln-1]{f(k)} + 1 = 2^(L-1)

この式は L=1のときにも f(L) = 2^(L-1) = 2^(1-1) = 1 なので 当てはまる。

157:153
07/09/26 21:19:08
解答

問題の場合の数は
L[mm]の棒の1,2,...,L-1[mm]の箇所に印をつけ
それぞれを切断するか否かの場合の数に等しいので
2^(L-1)

158:132人目の素数さん
07/09/26 22:07:45
同じ部品からなる場合は重複と考える場合はどうだろうか?

( 1+2+1で高さ4のものと 1+1+2で高さ4のものは同じとみなす)

159:132人目の素数さん
07/09/27 02:32:41
>152
 子が外周を回るとき、鬼は子より内側の円周を回るので…

160:132人目の素数さん
07/09/27 10:10:56
円周はまわらんのでは。

161:132人目の素数さん
07/09/27 10:35:28
漸近的に円周に近づくだけで、円周に到達しないということ?
領域の円Aの円周上に中心を取って、一回の移動分の半径の円Bを書く
BとAの円の交点とAの中心を結んだ線が円Bの内側にあれば、鬼は円周に到達可能
円Bの接線と一致するなら、到達不能、か?・・・円Aじゃなくなりそうだけど。

162:132人目の素数さん
07/09/27 22:09:10
↓これ解けばよさげかな

子の座標(X,Y)
X=Rcos(ωt), Y=Rsin(ωt)

鬼の座標(x,y)
r=√((X-x)^2+(Y-y)^2)として
dx/dt =(X-x)/r, dy/dt=(Y-y)/r

R,ωは定数
X,Y,x,y,rは時刻tの関数

t->∞でr->0を示す

163:132人目の素数さん
07/09/27 22:46:01
円である限り追いつかれる?

164:159
07/09/28 03:05:52
>160-163
 鬼は子より内側を回るので…  でした。

165:162
07/09/28 03:57:49
ってマズった

子と鬼が
距離1ずつ交互に逃げるのだったね

ということは
俺が書いたのは
一ステップあたりに
子と鬼が進める距離を無限小にとった場合
もしくは
領域となる円の半径を無限にとった場合に相当する・・・のか?

166:132人目の素数さん
07/09/28 04:22:58
鬼の番のときに子との距離が1以下だったら捕まるということでいいのかな?

167:132人目の素数さん
07/09/28 08:14:52
動くことが出来る領域をK、子を中心とした半径1の円内をM、鬼を中心とした半径1の円内をNとすると
子はMとNの共通部分以外の領域とKの共通部分L=K∪M ∪(MxorN)を動かないと捕まる。

逃げることが出来なくなるのはLが空集合になることを証明すればよい。。。

168:132人目の素数さん
07/09/28 10:11:25
鬼ごっこの問題は日本数学コンクールのヤツかな.

URLリンク(www10.plala.or.jp)

169:132人目の素数さん
07/09/28 11:55:38
問、
マッチ棒85本を使用して正8角形をつくると何個できるか(1本のマッチを隣り合う複数の正8角形の1辺としてもよい )

この問題の答えを出す数式を教えてください

170:132人目の素数さん
07/09/28 12:04:50
野暮な質問だけど
正八角形の一辺はかならずマッチ棒一個の長さで作らなきゃ駄目?
正八角形には重なりがあってもよい?
これが問題の趣旨なら答えなくてもいいけど

171:132人目の素数さん
07/09/28 12:05:35
ここ質問スレだっけ?

172:132人目の素数さん
07/09/28 12:12:31
>>167
何か解く指針になるような表現になってる?
言い換えにすぎない印象なんだけども・・・如何に。

173:132人目の素数さん
07/09/28 12:16:50
>>170

1辺は同じマッチ棒の長さで、昔のサッカーボールの6角形のように辺と辺で繋げてく感じなんですが…。


>>171
すんません。ここ質問スレじゃないんですね。

174:132人目の素数さん
07/09/28 12:17:25
>>169
立体は?

175:132人目の素数さん
07/09/28 13:08:34
平面です

176:132人目の素数さん
07/09/28 13:55:48
二本のマッチの尻と尻を合わせて正8角形がひとつできる。
とりあえずそれだけで42個

177:132人目の素数さん
07/09/28 21:11:54
A , B⊂Nに対して、A+B:={a+b|a∈A , b∈B}∪A∪B と定義する。
また、Aの元の個数を|A|で表すことにする。

(1)|A∩{1,2,…,n}|+|B∩{1,2,…,n}|≧nならば、n∈A+Bとなることを示せ。

(2)自然数列{xn}はliminf[n→∞]n/xn>1/2を満たすとする。
X={xn|n∈N}とおくとき、X+Xに含まれない自然数は有限個であることを示せ。
(十分大きな自然数は高々2個のxnの和で表せる、ということ)

178:132人目の素数さん
07/09/30 15:05:31
(1)
n∈A,もしくはn∈Bの時n∈A+Bは定義より明らかなので
AもBもnを含まない場合を考える

この時
|A∩{1,2,…,n}|+|B∩{1,2,…,n}|
=|A∩{1,2,…,n-1}|+|B∩{1,2,…,n-1}|≧nが成り立っている

以下、背理法でn∈A+Bを示す
あるA,Bが存在して、n∈A+Bではないとする

|A∩{1,2,…,n-1}|={a1,a2,...,ak}=kとすると
B∩{1,2,…,n-1}は{n-ak,...,n-a1}を含まない
(もし含むとするとn∈A+Bではないことに反する)
なのでB∩{1,2,…,n-1}は{1,2,…,n-1}から{n-ak,...,n-a1}を除いた元しか持ち得ず
これはn-1-k個以下である
しかしこれは
|B∩{1,2,…,n-1}|≧n-|A∩{1,2,…,n-1}|=n-k
なので矛盾する

従ってn∈A+B

無駄があるかも

179:132人目の素数さん
07/10/02 18:26:01
正n角形を一筆書きして出来る図形のパターンをp[n] 通りとする。
ただし、回転や鏡影を施して重なるものは同じパターンとします。
例 p[3]=1, p[4]=2

(1) p[5],p[6] を求めよ。
(2) p[n] を求めよ。

180:132人目の素数さん
07/10/02 19:07:12
>>179
>正n角形を一筆書きして出来る図形

すべての正n角形の頂点を通る一筆書き(頂点同士を直線で結ぶ)して出来る図形
星型etc

181:132人目の素数さん
07/10/05 04:38:29
通信網の問題:
互いに離れたところにいくつかの通信基地がある。
これらの基地の間には通信ケーブルが張り巡らされており、
どの二つの基地もちょうど一本のケーブルで結ばれている。
ところがこのケーブルは一方通行でしか情報を送れない。
つまり、二つの基地の間で、どちらかの基地は他方へ情報を送信できるが、逆方向へは直接送信はできない
このような通信基地たちとケーブルによって構成された通信網を考える。
さて、Aを通信基地のひとつとする。
もし以下が成り立つならば、このようなAを通信網の要と呼ぶ

「任意の基地B(A自身は除く)に対して@またはAが成り立つ
 @)AとBの間のケーブルはAが送信側でBが受信側である
   (これをA→Bと書くことにする)
 A)ある基地CがあってA→C→Bである 」

つまり、Aが要であるとはAは自分以外のどの基地へも高々2ステップで情報を送信できる事を意味する。

問題:
どんな通信網も必ず少なくとも一つ要を持つことを示せ

182:132人目の素数さん
07/10/05 07:07:44
同じ問題を出してもしょうがないでしょう。

183:132人目の素数さん
07/10/07 04:03:50
>>181
N個の基地からなる通信網に要Aがあると仮定する。
Aから1ステップで到達できる基地をB={B1,B2,‥,Bm}とし、
残り全部をC={C1,C2,‥,Cn}とする。
仮定より、Cの基地は全て、あるBiから1ステップで到達できる。

ここに新たに基地Xを追加したとき、
・A→XならAが要。
・あるBiに対しBi→Xなら、A→Bi→Xとなるため、やはりAが要。
・X→A、かつ全てのBiに対しX→Biのときは、任意のCjに対し
 あるBkがあってX→Bk→Cjとなるため、Xが要になる。

よって、N+1個のときも要がある。

184:132人目の素数さん
07/10/07 04:10:06
>>117
 直径1以上の円形の穴。円周上も立入り禁止。
 鬼が近付いて来たら、円の中心Oについて対称な点に逃げる。


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

4292日前に更新/196 KB
担当:undef