巨大数探索スレッド12
at MATH
484:132人目の素数さん
17/07/08 20:44:57.11 fLvsPSGe.net
反響があるとは意外。
>>459 多分勘違いをしていると思う。
まず、集合論でも連続体仮説が成り立つモデルと成り立たないモデルがとれることからも分かるように、
一般に、ある一つの無矛盾な公理系に対して、それが成り立つモデルはたくさん存在する。
そして、PA + ∃n (H_M(n))のモデルは、当然PAも成り立つから、同時にPAのモデルでもある。
(PA + ∃n (H_M(n))は矛盾していない。PAが無矛盾なら、PAから ¬∃n (H_M(n))が導出されてしまう心配は無いのだから)
PAのモデルに属していれば自然数であるから、∃n (H_M(n))の証拠となる超準的自然数さえも、自然数であることに
変わりなく、0,1,2のようなPAだけから存在を証明できる自然数(仮に普通の自然数と呼ぼう)と比較可能で、
どんな普通の自然数よりも大きい。
だから、異なるモデルでも大きさを比較できるのはその通りだが、超準的自然数を含んでいるモデルのほうが圧倒的に有利である。
超準的自然数を出してしまえば、超準的自然数を含まないモデルに属する自然数に必ず勝てるのだから。
そして機械Mの状態数がm以下であれば、BB(m)には超準的自然数が採用されるだろう。
機械Mを構成するのに必要な状態数はせいぜい普通の自然数で足りるだろう。
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
2日前に更新/239 KB
担当:undef