現代数学の系譜11 ガロア理論を読む27
at MATH
384:方法は方程式を図形ととらえることで ある。例えば、y = x2 という方程式を考えよう。中 学生の時にこの方程式は放物線を表すことを習った はずである。放物線ととらえれば図形なので、幾何 学的なアプローチが可能になってくる。この考えの もと、多変数連立方程式を幾何学的にとらえようと するのが代数幾何学と言われる数学分野である。 代数幾何学は様々な数学の交差点に位置 している。代数多様体があれば、その整数解ででき る図形を考えることができる。この整数解を研究す るのは数論である。一方で代数多様体の複素数解で できる図形を考えることができる。こうすると複素 幾何学と結びつく。 代数幾何という同じ土台にのっていながら全く違 う世界。しかし、これらの世界の間にも我々の感覚 を超える関係、類似、があり、上の図2のように三 位一体で考えたとき数学の真実にたどり着けるとい うのがヴェイユの哲学(この哲学を主張するのは彼 が初めてではないと彼自身断りを入れている)であ る。
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
32日前に更新/513 KB
担当:undef