高校数学の質問スレ Part421 at MATH
[2ch|▼Menu]
[前50を表示]
850:132人目の素数さん
22/09/25 20:52:24.28 Kob8sbcV.net
>>837
>>m1t≡a2-a1 modm2
>>(m1, m2)=Gとすると
>>π^2√3-2∫[t=0→1/2]π{√1-(1/2-t)^2-√3/2}^2}dt
>>1/2-t=cosθとおくと、
>>-dt=-sinθdθ
>>dt=sinθdθ
>>π^2√3-2π∫[θ=π/3→π/2]sinθsinθdθ
>>=π^2√3-2π∫[θ=π/3→π/2]sinθ^2dθ
>>=π^2√3-2π∫[θ=π/3→π/2](1/2-cos2θ/2)dθ
>>=π

851:132人目の素数さん
22/09/26 01:51:17.06 d28flYvP.net
哀れすぎる
連投荒らししか能がないとは

852:132人目の素数さん
[ここ壊れてます] .net
出題君のことならその通り
かててくわえて、自問自答とか哀れすぎ

853:132人目の素数さん
[ここ壊れてます] .net
1問質問失礼します

複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。

(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。

以下、αは(1)の条件をみたすとする。

(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。

(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。

854:132人目の素数さん
22/09/26 13:30:15.88 FQne3KRF.net
>>842
α≠0,1であることが必要…①
このとき、α^2≠0,1
さらにα=α^2⇔α=0,1より、
α≠0,1のときα≠α^2も成り立つ…②
またα≠0,1のとき1/α≠0,1も成り立ち、このとき1/α=α⇔α^2=1だから
α≠0,1のとき1/α≠αも成り立つ…③
また1/α≠α^2⇔α≠1,ω,ω^2…④
①~③より求める条件は
α≠0,1,ω,ω^2…(答)

855:イナ
22/09/26 15:19:03.31 yw3rhSzQ.net
>>736
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

856:132人目の素数さん
22/09/26 16:12:11.31 qtYTCS1L.net
>>844
出題君が真摯にレスをつけてくれるといいねw

857:132人目の素数さん
22/09/26 19:38:32.15 d28flYvP.net
>>842
(2)以降が予想以上に大変です
座標平面に置き換えましたが計算地獄でした
どなたか図形的考察や(高校レベルの)複素数特有の計算を用いて、高校生でも無理なく解ける解法をお示しください
よろしくお願いいたします

858:132人目の素数さん
22/09/26 19:41:56.80 qtYTCS1L.net
>>846
イナさんの解答にレスしてやれよ
おまえ、それでも人間か?

859:132人目の素数さん
22/09/26 19:43:02.01 qtYTCS1L.net
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れすぎ

860:132人目の素数さん
22/09/26 19:43:48.59 qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2


861:dcos^2θ+cos^3θ)dθ =2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3} =2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9} =-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9} (i)(ii)より、 体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π d=cosα,sinα=√(1-d^2) dの2次方程式を解けばなにかわかるかも。



862:132人目の素数さん
22/09/26 19:44:01.20 qtYTCS1L.net
名前:イナ ◆/7jUdUKiSM Mail:sage 投稿日:2022/09/26(月) 15:19:03.31 ID:yw3rhSzQ
>>736
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

863:132人目の素数さん
22/09/26 19:44:18.89 qtYTCS1L.net
>>844
出題君が真摯にレスをつけてくれるといいねw

864:132人目の素数さん
22/09/26 19:44:29.09 qtYTCS1L.net
>>844
出題君が真摯にレスをつけてくれるといいねw

865:132人目の素数さん
22/09/26 19:44:53.78 qtYTCS1L.net
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす

866:132人目の素数さん
22/09/26 19:45:10.39 qtYTCS1L.net
>>847
>>>846
>イナさんの解答にレスしてやれよ
>おまえ、それでも人間か?

867:132人目の素数さん
22/09/26 19:45:37.92 qtYTCS1L.net
852 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:29.09 ID:qtYTCS1L
>>844
出題君が真摯にレスをつけてくれるといいねw
853 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:53.78 ID:qtYTCS1L
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす

868:132人目の素数さん
22/09/26 19:45:58.23 qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

869:132人目の素数さん
22/09/26 19:46:04.81 qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

870:132人目の素数さん
22/09/26 22:35:41.48 d28flYvP.net
n≧1とする。
n+1個の整数
2^0,2^1,...,2^n
から無作為に異なる2つの整数を選んで足し合わせてできる整数を、3で割ったときの余りが1となる確率p_nをnで表せ。

871:132人目の素数さん
22/09/26 22:52:11.41 qtYTCS1L.net
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

872:132人目の素数さん
22/09/26 22:52:24.67 qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

873:132人目の素数さん
22/09/26 22:55:40.01 8cD5Fi3E.net
出題者からなんのレスもないのに、一生懸命解答しようとする
イナさんには敬服します。
おしむらくは、解答が短すぎること。
もっと長い解答でレスを要求しつづけましょう。

874:132人目の素数さん
22/09/26 22:57:29.68 8cD5Fi3E.net
>前>>736
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

875:132人目の素数さん
22/09/26 22:58:00.23 8cD5Fi3E.net
>>849
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

876:132人目の素数さん
[ここ壊れてます] .net
>>793
a, b, c, …, kまでは成り立つと仮定して
llx/l]個を新たに取り除く。
しかしその中のal, bl, …の倍数は既に除かれているので加える
abl、acl, …の倍数は除く
…というのとをやっていくと
lのときも正しいことが分かる。

x=nとすると
n(1-1/a)(1-1/b)…=φ(n)となる。

877:132人目の素数さん
22/09/27 00:20:14.02 wbHUtqvc.net
>>794
約数をd₁, d₂, …, dₙとすると
φ(n/d₁)+…+φ(n/dₙ)
φ(n/d₁)はd₁の倍数のうち他の約数とは互いに素なものの個数を表す。よってこの和はnになる。
n=15とすると
d₁=1、d₂=3, d₃=5、d₄=15で
φ(1)+φ(3)+φ(5)+φ(15)
=1+2+4+8=15=n
15
5 10
3 6 9 12
1 2 4 7 8 11 13 14

878:132人目の素数さん
22/09/27 00:33:06.55 wbHUtqvc.net
>>796
Σμ(d)=1-k+(k//2+ …(-1)ᵏ
=Σ[i=0, k](k//i)(-1)^i
=(1-1)ᵏ=0
平方因子を含めば当然になる。

879:132人目の素数さん
22/09/27 01:20:42.55 wbHUtqvc.net
>>797
Σμ(n/d)G(d)
においてG(d)=Σ[δ/d]F(δ)とおくと
Σμ(n/d)F(δ)=F(n)=Σμ(n/d)G(d)
(>>796を使った)

880:132人目の素数さん
22/09/27 01:29:08.88 wbHUtqvc.net
>>795
F(n)=φ(n)の時, G(n)=nだから
φ(n)=Σμ(d)(n/d)
=n-n(1/p+1+q+…)-(1/pq…)…
=n(1-1/p)…となる。

881:132人目の素数さん
22/09/27 02:06:46.18 wbHUtqvc.net
1の原始n乗根は何個あるか

882:132人目の素数さん
22/09/27 02:06:52.58 bRD/OLHR.net
𝟙*φ = 𝟙*φᵉᵁᴸ
→μ*(𝟙*φ) = μ*(𝟙*φᵉᵁᴸ)
→(μ*𝟙)*φ = (μ*𝟙)*φᵉᵁᴸ
→φ = φᵉᵁᴸ

883:741
22/09/27 07:54:29.79 EFY7TwyJ.net
>>745
お答えくださってどうもありがとう!

884:132人目の素数さん
22/09/27 09:20:15.80 CMRjnN5K.net
>>861
>出題者からなんのレスもないのに、一生懸命解答しようとする
>イナさんには敬服します。
>
>おしむらくは、解答が短すぎること。
>もっと長い解答でレスを要求しつづけましょう。

885:132人目の素数さん
22/09/27 09:20:47.01 CMRjnN5K.net
>(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ

886:132人目の素数さん
22/09/27 09:21:22.54 CMRjnN5K.net
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

887:132人目の素数さん
22/09/27 09:21:41.61 CMRjnN5K.net
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

888:132人目の素数さん
22/09/27 09:22:05.62 CMRjnN5K.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

889:132人目の素数さん
22/09/27 09:22:17.31 CMRjnN5K.net
レスしてやれよ!w
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

890:132人目の素数さん
22/09/27 09:22:45.83 CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

891:132人目の素数さん
22/09/27 09:22:55.02 CMRjnN5K.net
>>878
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

892:132人目の素数さん
22/09/27 09:23:32.03 CMRjnN5K.net
864 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 23:48:10.67 ID:3NZ1an0O
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

893:132人目の素数さん
22/09/27 09:24:44.05 CMRjnN5K.net
レスしてやれよ。
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

894:132人目の素数さん
22/09/27 09:24:53.93 CMRjnN5K.net
>>881
>レスしてやれよ。
>出しっぱなしかよw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

895:132人目の素数さん
22/09/27 09:25:57.84 CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ

896:132人目の素数さん
22/09/27 09:26:05.16 CMRjnN5K.net
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ

897:132人目の素数さん
22/09/27 15:14:04.72 fP+nze4b.net
>>869
n乗根と原始n乗根
xⁿ-1=0、
x=cosθ+isinθ、θ=2πk/n
k=0, 1


898:, …, n-1 既約剰余系φ(n)だけ原始n乗根はある。その他を含めてn乗根は全部でn個ある。 1の6乗根は6個ある 1、-1、(-1±√3i)/2、(1±√3i)/2 1乗根1個、2乗根1個、3乗根2個、原始6乗根2個。1、2、3、6。



899:132人目の素数さん
22/09/27 15:44:15.41 fP+nze4b.net
Fₙ(x)=Π[n/d] (x^(n/d)-1)^(μ(d))とおく
原始n乗根のみを根とする多項式
定数項は+1、1次の項の係数はμ(n)
原始n乗根の和f(n)
Σ[n/d]f(d)=1(n=1)、0(n>1)=μ(n)
原始n乗根ρに対してρᵏ (k=0, 1, …, n-1)はn乗根を表す。
(a, b)=1の時, 1のa乗根と1のb乗根をかけるとab乗根が全て出てくる。r=1、θ=2π((ay+bx)/ab)

900:132人目の素数さん
22/09/27 15:48:27.74 3Y0twqbg.net
>>842
0,α,α^2を通る円の中心はβ=α^2(α'-1)/(α-α')...①
これが1を通るとき|1-β|=|0-β|
(1-β)(1-β)'=1-β-β'+ββ'=ββ'
よってβ+β'=1だからRe(β)=1/2
まで分かりましたがこの先に進めません
円の方程式が複雑で出せません
どなたかよろしくお願いいたします

901:132人目の素数さん
22/09/27 15:54:36.78 CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ

902:132人目の素数さん
22/09/27 15:55:04.38 CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dc


903:os^2θdθ =4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ =4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ =4dπ(-α/2+π/4+sin2α/4) =-2dαπ+dπ^2+dπsin2α (ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、 体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt t=sinθとおくとdt=cosθdθ 体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ =2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ =2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3} =2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3} =2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9} =-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9} (i)(ii)より、 体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π d=cosα,sinα=√(1-d^2) dの2次方程式を解けばなにかわかるかも。



904:132人目の素数さん
22/09/27 15:55:16.35 CMRjnN5K.net
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

905:132人目の素数さん
22/09/27 15:55:28.82 CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

906:132人目の素数さん
22/09/27 15:55:44.19 CMRjnN5K.net
883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ

907:132人目の素数さん
22/09/27 15:56:01.68 CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ

908:132人目の素数さん
22/09/27 15:56:26.36 CMRjnN5K.net
レスしてやれよ。
出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

909:132人目の素数さん
22/09/27 15:56:50.27 CMRjnN5K.net
>レスしてやれよ。
>出しっぱなしかよw
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

910:132人目の素数さん
22/09/27 15:57:11.15 CMRjnN5K.net
883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
自問自答しかできない低能出題者はいらないよ
884 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:26:05.16 ID:CMRjnN5K
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ

911:132人目の素数さん
[ここ壊れてます] .net
>>887
γz'+γ'z=zz'...①は原点を通る円の方程式である。
①がz=1を通るので
γ+γ'=1
よってRe(γ)=1/2
①にγ=1/2+ciを代入し、これがz=α=p+qiを通るならば、
(1/2+ci)(p-qi)+(1/2-ci)(p+qi)=p^2+q^2
(1/2){(p-qi)+(p+qi)}+ic{(p-qi)-(p+qi)}=p^2+q^2
p+2qc=p^2+q^2
c=(p^2+q^2-p)/2q...②
したがってこのとき
γ=(1/2)+i(p^2+q^2-p)/2q
であり、
γz'+γ'z=zz'⇔{1+i(p^2+q^2-p)}z'+{1-i(p^2+q^2-p)}z=2qzz'
(z+z')-i(p^2+q^2-p)(z-z')=zz'
これがさらにz=α^2=p^2-q^2+2pqiを通るとき、
2(p^2-q^2)+4pq(p^2+q^2-p)=(p^2-q^2)^2+(2pq)^2

無理こんなの解けない

912:132人目の素数さん
[ここ壊れてます] .net
すいませんこれが本当に解けないのでよろしくお願いいたします
解決したところまで書きます


複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。

(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。

以下、αは(1)の条件をみたすとする。

(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。

(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

488日前に更新/458 KB
担当:undef