素数の規則を見つけた ..
[2ch|▼Menu]
359:132人目の素数さん
24/01/07 00:36:17.90 SsbMX1Ts.net
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
43個
121, 143, 169, 187, 209 ←11以上の素数の積
43+5=48=(2^1-2^0)*(3^1-3^0)*(5^1-5^0)*(7^1-7^0)
e^(i*2π*1/(210))+e^(i*2π*11/(210))+e^(i*2π*13/(210))+e^(i*2π*17/(210))+e^(i*2π*19/(210))+e^(i*2π*23/(210))+e^(i*2π*29/(210))+e^(i*2π*31/(210))
+e^(i*2π*37/(210))+e^(i*2π*41/(210))+e^(i*2π*43/(210))+e^(i*2π*47/(210))+e^(i*2π*53/(210))+e^(i*2π*59/(210))+e^(i*2π*61/(210))+e^(i*2π*67/(210))
+e^(i*2π*71/(210))+e^(i*2π*73/(210))+e^(i*2π*79/(210))+e^(i*2π*83/(210))+e^(i*2π*89/(210))+e^(i*2π*97/(210))+e^(i*2π*101/(210))+e^(i*2π*103/(210))
+e^(i*2π*107/(210))+e^(i*2π*109/(210))+e^(i*2π*113/(210))+e^(i*2π*121/(210))+e^(i*2π*127/(210))+e^(i*2π*131/(210))+e^(i*2π*137/(210))+e^(i*2π*139/(210))
+e^(i*2π*143/(210))+e^(i*2π*149/(210))+e^(i*2π*151/(210))+e^(i*2π*157/(210))+e^(i*2π*163/(210))+e^(i*2π*167/(210))+e^(i*2π*169/(210))+e^(i*2π*173/(210))
+e^(i*2π*179/(210))+e^(i*2π*181/(210))+e^(i*2π*187/(210))+e^(i*2π*191/(210))+e^(i*2π*193/(210))+e^(i*2π*197/(210))+e^(i*2π*199/(210))+e^(i*2π*209/(210))

360:132人目の素数さん
24/01/07 00:36:24.60 SsbMX1Ts.net
6.606151730956146027474643765229636509246755471355322415357773585+3.955768916487488063421523135775796876846008211413418631075128838i
0.348729119554712206479635492783055741844634253202227559498670175+7.63835963801662783628638751362732226626973708618413688115736445i
-6.45488085051085823395427925801269225109138972455754997485644376+3.85884286000217691319461868951235274934874481657572124586680902i
-6.45488085051085823395427925801269225109138972455754997485644376-3.85884286000217691319461868951235274934874481657572124586680902i
0.348729119554712206479635492783055741844634253202227559498670175-7.63835963801662783628638751362732226626973708618413688115736445i
6.606151730956146027474643765229636509246755471355322415357773585-3.955768916487488063421523135775796876846008211413418631075128838i
=0.5
(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2になる
1/2=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d))
a=1 b=1 c=1 d=1のとき 1/2になる

361:132人目の素数さん
24/01/07 01:07:11.84 SsbMX1Ts.net
2^a*3^b
2^1*3^1
1=e^(i*2π*1/(6))+e^(i*2π*5/(6))
2^1*3^2
1,5,7,11,13,17
0=e^(i*2π*1/(18))+e^(i*2π*5/(18))+e^(i*2π*7/(18))+e^(i*2π*11/(18))+e^(i*2π*13/(18))+e^(i*2π*17/(18))
2^2*3^1
1,5,7,11
0=e^(i*2π*1/(12))+e^(i*2π*5/(12))+e^(i*2π*7/(12))+e^(i*2π*11/(12))
2^2*3^2
1,5,7,11,13,17,19,23,25,29,31,35
0=e^(i*2π*1/(36))+e^(i*2π*5/(36))+e^(i*2π*7/(36))+e^(i*2π*11/(36))
+e^(i*2π*13/(36))+e^(i*2π*17/(36))+e^(i*2π*19/(36))+e^(i*2π*23/(36))
+e^(i*2π*25/(36))+e^(i*2π*29/(36))+e^(i*2π*31/(36))+e^(i*2π*35/(36))
(2^a*3^b)未満の2,3を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる(a=1,b=1のときを除く)
0=Σe^(i*2pi*(X/(2^a*3^b))
a=1 b=2のとき 0になる

362:132人目の素数さん
24/01/07 01:13:40.64 SsbMX1Ts.net
(2^a*3^b)未満の2,3を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1か0になる
1=Σe^(i*2pi*(X/(2^1*3^1))(a=1,b=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b)) (a>1またはb>1のとき)
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき)

(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2か0になる
1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)

363:132人目の素数さん
24/01/07 12:52:06.49 SsbMX1Ts.net
e^(i*2π*(x/2^2+y/3+z/5)) ←x≠2*n1,y≠3*n2,z≠5*n3 
cos(2π*(X/(2^2*3*5))) > cos(2π*(49/(2^2*3*5)))のときX=素数(Xがとりうる数は2,3,5を素因数に持たず、2^2*3*5未満の数 (2^2-2^1)*(3^1-3^0)*(5^1-5^0)=16個(1を含む))
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき)
0=e^(i*2π*1/(4*3*5))+e^(i*2π*7/(4*3*5))+e^(i*2π*11/(4*3*5))+e^(i*2π*13/(4*3*5))+e^(i*2π*17/(4*3*5))+e^(i*2π*19/(4*3*5))+e^(i*2π*23/(4*3*5))+e^(i*2π*29/(4*3*5))
+e^(i*2π*31/(4*3*5))+e^(i*2π*37/(4*3*5))+e^(i*2π*41/(4*3*5))+e^(i*2π*43/(4*3*5))+e^(i*2π*47/(4*3*5))+e^(i*2π*49/(4*3*5))+e^(i*2π*53/(4*3*5))+e^(i*2π*59/(4*3*5))

364:132人目の素数さん
24/01/07 16:03:11.88 SsbMX1Ts.net
P(n)=n番目の素数
(Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数(誤差±1弱)
(1*2)*5^2/(2*3)+1 =9.33
(1*2*4)*7^2/(2*3*5)+2 =15.06
(1*2*4*6)*11^2/(2*3*5*7)+3 =30.65
(1*2*4*6*10)*13^2/(2*3*5*7*11)+4 =39.11
(1*2*4*6*10*12)*17^2/(2*3*5*7*11*13)+5 =60.43
(1*2*4*6*10*12*16)*19^2/(2*3*5*7*11*13*17)+6 =71.16

365:132人目の素数さん
24/01/07 16:11:50.79 SsbMX1Ts.net
P(n)=n番目の素数
(Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数(誤差±1弱)
(1*2)*5^2/(2*3)+1 =9.33 (5^2未満の素数の個数=9個)
(1*2*4)*7^2/(2*3*5)+2 =15.06 (7^2未満の素数の個数=15個)
(1*2*4*6)*11^2/(2*3*5*7)+3 =30.65 (11^2未満の素数の個数=30個)
(1*2*4*6*10)*13^2/(2*3*5*7*11)+4 =39.11 (13^2未満の素数の個数=39個)
(1*2*4*6*10*12)*17^2/(2*3*5*7*11*13)+5 =60.43 (17^2未満の素数の個数=61個)
(1*2*4*6*10*12*16)*19^2/(2*3*5*7*11*13*17)+6 =71.16 (19^2未満の素数の個数=72個)
(1*2*4*6*10*12*16*18)*23^2/(2*3*5*7*11*13*17*19)+7 =97.47 (23^2未満の素数の個数=99個)
(1*2*4*6*10*12*16*18*22)*29^2/(2*3*5*7*11*13*17*19*23)+8 =145.57 (29^2未満の素数の個数=147個)
(1*2*4*6*10*12*16*18*22*28)*31^2/(2*3*5*7*11*13*17*19*23*29)+9 =160.78 (31^2未満の素数の個数=162個)
(1*2*4*6*10*12*16*18*22*28*30)*37^2/(2*3*5*7*11*13*17*19*23*29*31)+10 =219.25 (37^2未満の素数の個数=219個)

366:132人目の素数さん
24/01/07 16:18:24.09 SsbMX1Ts.net
(1*2*4*6*10*12*16*18*22*28*30*36)*41^2/(2*3*5*7*11*13*17*19*23*29*31*37)+11 =261.00 (41^2未満の素数の個数=263個)
(1*2*4*6*10*12*16*18*22*28*30*36*40)*43^2/(2*3*5*7*11*13*17*19*23*29*31*37*41)+12 =280.27 (43^2未満の素数の個数=283個)
(1*2*4*6*10*12*16*18*22*28*30*36*40*42)*47^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43)+13=326.05 (47^2未満の素数の個数=329個)
(1*2*4*6*10*12*16*18*22*28*30*36*40*42*46)*53^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47)+14=403.61 (53^2未満の素数の個数=409個)

367:132人目の素数さん
24/01/07 16:24:27.94 SsbMX1Ts.net
(1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52)*59^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53)+15 =488.71 (59^2未満の素数の個数=487個)
(1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58)*61^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59)+16 =513.79 (61^2未満の素数の個数=519個)
(1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58*60)*67^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61)+17 =607.69 (67^2未満の素数の個数=609個)

368:132人目の素数さん
24/01/07 16:34:23.51 SsbMX1Ts.net
(1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58*60*66)*71^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67)+18 =671.43 (71^2未満の素数の個数=675個)
lim[n→∞] (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数
1/ζ(1)*P(∞)^2+(∞-1)=∞個 (P(∞)^2未満の素数の個数)
lim[n→∞] (Π(k=1〜n+1)(1-1/P(k))*P(n+1)^2)+(n+1-1) - (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1) = 1/ζ(1)*lim[n→∞] ((1-1/P(n+1))*P(n+1)^2-(P(n)^2)+1=nが無限の時のP(n)^2以上P(n+1)^2未満の素数の個数

369:132人目の素数さん
24/01/07 23:47:11.38 SsbMX1Ts.net
(2^2*3^1*5^1)未満の2,3,5を素因数に持たない数をX
e^(i*2π*(x/2^2+y/3+z/5)) = e^(i*2π*(X/(2^2*3*5))) ←(4n<x<4n+2,4n+2<x<4n+4,3n<y<3n+3、5n<z<5n+5)の時
0=Σ(4n<x<4n+2,4n+2<x<4n+4,3n<y<3n+3、5n<z<5n+5)e^(i*2π*(x/2^2+y/3+z/5))
2π*1/(18)+2π*5/(18)+2π*7/(18)+2π*11/(18)+2π*13/(18)+2π*17/(18)=6π ←2^1*3^2未満のとき
2π*1/(12)+2π*5/(12)+2π*7/(12)+2π*11/(12)=4π ←2^2*3^1未満のとき
(1+5+7+11+13+17+19+23+25+29+31+35)/36*2π=12π ←2^2*3^2未満のとき
(1+5+7+11+13+17+19+23+25+29+31+35+37+41+43+47+49+53+55+59+61+65+67+71)/72*2π=12π ←2^3*3^2未満の時
0=Σ(x,y,zが分母の素因数を含まない)e^(i*2π*(x/2^a+y/3^b+z/5^c))のため角度をすべて足しても2πで割り切れる

370:132人目の素数さん
24/01/07 23:53:57.05 SsbMX1Ts.net
ζ(s)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+e^(i*yln5)/√5+・・・
(Σ(n=1〜∞)(2π*y*ln(n)) mod 2π=0 ←角度をn個たしても2πで割り切れる
Im(zetazero[k])=k番目の零点の虚部
e^(i*Σ(n=1〜∞)(2π*Im(zetazero[k])*ln(n)))=1 

371:132人目の素数さん
24/01/08 00:16:23.34 r5n8vQTC.net
(2*(ln2/lnn))-1)*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))
=Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n))
(2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1)) ←正規化する

e^(i*Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1))=1

372:132人目の素数さん
24/01/08 00:24:18.70 r5n8vQTC.net
(1-2*((ln2/lnn))+1))*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))
=Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n))
(2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(-2*(ln2/lnn)-1))←正規化する
e^(i*Σ(n=1〜∞)((-1)^(n)*(2π*Im(zetazero[k])*ln(n))/(2*(ln2/lnn)+1)))=1

373:132人目の素数さん
24/01/08 13:24:25.42 r5n8vQTC.net
P(n)=n番目の素数
lim[n→∞] (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)=P(n)/lnP(n)±√P(n)*lnP(n)
lim[n→∞] 1/ζ(1)*P(n)+(n-1)/P(n)=1/lnP(n)±2*ln√P(n)/√P(n) ←(n-1)/P(n),2*ln√P(n)/√P(n)が0になる
lim[n→∞] 1/ζ(1)*P(n)=1/lnP(n)
P(∞)*ln(P(∞))=ζ(1) 
P(∞)^P(∞)=e^(ζ(1)) ←無限大の素数の無限大の素数乗はe^(ζ(1))になる

374:132人目の素数さん
24/01/09 22:53:15.12 lExBawCv.net
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
1*2*4*6*10 480
+e^(i*2π*1/(2*3*5*7*11))
+e^(i*2π*13^3/(2*3*5*7*11))
+Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}]
+Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}]
+Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}]
+Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}]
+Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}]
+Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}]
+Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}]
+Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 17}]
+Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}]
+Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}]
338+1+35+26+23+17+13+11+7+5+3+1
e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))

375:132人目の素数さん
24/01/09 23:05:27.32 lExBawCv.net
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
-4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i
-9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i
-3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i
3.10225665902196712501762391941450159991129502344048864868- 7.5267647987972420637530463404490362777099344431826i
2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i

-4.773825613952+ 2.95831888697030977i
-9.085795863586- 3.07336009825384874i
-3.683112944323- 8.97822183821173035i
+3.1022566590219- 7.52676479879724206i
+2.9771770604827- 2.01329667480448613i
=-11.4633007023564 - 18.63332452309699751 i
Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-11.4633007023564 - 18.63332452309699751 i≒0 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))

376:132人目の素数さん
24/01/09 23:18:23.05 lExBawCv.net
1*2*4*6*10 480
+e^(i*2π*1/(2*3*5*7*11))
+e^(i*2π*13^3/(2*3*5*7*11))
+Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}]
+Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}]
+Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}]
+Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}]
+Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}]
+Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}]
+Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}]
+Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 16}]
+Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}]
+Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}]
338+1+1+35+26+23+17+13+11+6+5+3+1=480
e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))

377:132人目の素数さん
24/01/09 23:21:20.36 lExBawCv.net
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
-4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i
-9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i
-3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i
2.14588565686102345824797192824291394603103694047283735842- 7.8189197341066978310674713188024685168005390199084i
2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i

-4.773825613952+ 2.95831888697030977i
-9.085795863586- 3.07336009825384874i
-3.683112944323- 8.97822183821173035i
+2.1458856568610- 7.81891973410669783i
+2.9771770604827- 2.01329667480448613i
=-12.4196717045173 - 18.92547945840645328 i
Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-12.4196717045173 - 18.92547945840645328 i= -1 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))

378:132人目の素数さん
24/01/09 23:36:45.27 lExBawCv.net
Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
Sum[e^(i*2π*prime[k]/(2*3*5*7)), {k, 5, 46}]+e^(i*2π*1/(2*3*5*7))+e^(i*2π*121/(2*3*5*7))=-0.688942 + 2.51378 i
e^(i*2π*143/(2*3*5*7))+e^(i*2π*169/(2*3*5*7))+e^(i*2π*187/(2*3*5*7))+e^(i*2π*209/(2*3*5*7))=1.6889421505813673802324365777259 -2.51377639724034521156697179892091634207165i

(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2か0になる
1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)

379:132人目の素数さん
24/01/09 23:37:16.54 lExBawCv.net
(2^a*3^b)未満の2,3を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1か0になる
1=Σe^(i*2pi*(X/(2^1*3^1))(a=1,b=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b)) (a>1またはb>1のとき)

(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき)


(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2か0になる
1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)

(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)

380:132人目の素数さん
24/01/09 23:40:41.55 lExBawCv.net
(2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと(-1)^nか0になる(nが偶数の時は1,奇数の時は-1)
(-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)

381:132人目の素数さん
24/01/10 00:16:53.95 I/Yj6vvM.net
(2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持つ数をYとおく
Yに若い数から順に入れて足すと(-1)^(n+1)か0になる(nが偶数の時は-1,奇数の時は1) ←Zを全体の集合とするとΣe^(i*2pi*(Z/(2^1*3^1*・・・*P(n)^1))=0のため
(-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき)
0=Σe^(i*2pi*(Y/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)

Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合
Y'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合
(-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))
1/P(n+1)*(-1)^(n+1)=1/P(n+1)*Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))
(-1)^(n+2)=1/P(n+1)*(-1)^(n+1)+Σe^(i*2pi*((Y'-Y)/(2^1*3^1*・・・*P(n)^1*P(n+1)) ←Y'の集合に足らない数を追加で足してやることでΣe^(i*2pi*(Y'/(2^1*3^1*・・・*P(n)^1*P(n+1))にできる
(-1)^(n+2)=Σe^(i*2pi*(Y'/(2^1*3^1*・・・*P(n)^1*P(n+1))

382:132人目の素数さん
24/01/10 00:19:54.14 I/Yj6vvM.net
(-1)^(n+2)-1/P(n+1)*(-1)^(n+1)=Σe^(i*2pi*((Y'-Y)/(2^1*3^1*・・・*P(n)^1*P(n+1))
|1-1/P(n+1)|はY'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合から
Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合をひいた数の集合をすべて足して
(2^1*3^1*・・・*P(n)^1*P(n+1))で割った数だとみなせる

383:132人目の素数さん
24/01/10 00:50:05.87 I/Yj6vvM.net
(2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持つ数をYとおく
Yに若い数から順に入れて足すと(-1)^(n+1)か0になる(nが偶数の時は-1,奇数の時は1) ←Zを全体の集合とするとΣe^(i*2pi*(Z/(2^1*3^1*・・・*P(n)^1))=0のため
(-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき)
0=Σe^(i*2pi*(Y/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)

Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合
Y'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合
(-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))
0=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))+Σe^(i*2pi*((Y')/(2^1*3^1*・・・*P(n)^1*P(n+1))
0=Σe^(i*2pi*(Y*P(n+1)/(2^1*3^1*・・・*P(n)^1*P(n+1)))+Σe^(i*2pi*((Y')/(2^1*3^1*・・・*P(n)^1*P(n+1))
Y*P(n+1)+Y'の集合は2^1*3^1*・・・*P(n)^1*P(n+1)で分割された円周上に均等に分布する

384:132人目の素数さん
24/01/11 18:46:36.87 if71/72+.net
zetazero[k]=k番目のゼロ点
ζ(zetazero[k])=1/(1-1/2^(zetazero[k]-1))*1/(1-1/m^(zetazero[k]-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(zetazero[k]))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(zetazero[k])))=0
Σ(n=1〜∞)(-1)^(n-1)*1/n^(zetazero[k]))=0のため
m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(zetazero[k]))=(Σ(n=1〜∞)(-1)^(n-1)*1/(m^(1-1/s)*n)^(zetazero[k]))=0になる
m≠1 zetazero[k]=x+iy
(Σ(n=1〜∞)(-1)^(n-1)*1/(m^((x-1+iy)/(x+iy))*n)^(zetazero[k]))=(Σ(n=1〜∞)(-1)^(n-1)*1/(m^((x^2 - x + y^2)/(x^2 + y^2) + (i y)/(x^2 + y^2))*n)^(zetazero[k]))
Re((m^((x^2 - x + y^2)/(x^2 + y^2))*n*m^( i*(y)/(x^2 + y^2)))^(x+i*y))
=(m^((x^2 - x + y^2)/(x^2 + y^2))*n)^x*m^(-y^2/(x^2 + y^2))
=m^((x^3-x^2+y^2*(x-1))/(x^2+y^2))*n^x
=m^(x-1)*n^x
Im((m^((x^2 - x + y^2)/(x^2 + y^2))*n*m^( i*(y)/(x^2 + y^2)))^(x+i*y))
=m^(iy*(x^2 - x + y^2)/(x^2 + y^2))*n^(iy)*m^( i*xy/(x^2 + y^2))
=m^(i y) n^(i y)
Σ(n=1〜∞)(-1)^n*e^(i*y*ln(mn))/(m^(x-1)*n^x)=0 ←長さ1/(m^(x-1)*n^x)の辺をe^(i*y*ln(mn))で回転させて連結させると多角形を作ることができるため0点に収束する

385:132人目の素数さん
24/01/11 19:05:22.36 if71/72+.net
Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(-1/2)*n^(1/2)) ←mに何を入れても0点に収束する
Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n/2))/(1/2^(-1/2)*n^(1/2))=0 ←逆数でも収束する
Σ(n=1〜∞)(-1)^n*e^(i*y*ln(n/m))/(m^(1-x)*n^x)=0 ←長さ1/(m^(1-x)*n^x)の辺をe^(i*y*ln(n/m))で回転させて連結させると多角形を作ることができるため0点に収束する
(m^(1-x)とn^x)の次数が等しいときx=1/2出ないといけない
Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(4n))/(4^(-2/3)*n^(1/3))=-0.63+0.65i ←0点に収束しない

386:132人目の素数さん
24/01/12 20:50:34.97 Uq67vDTi.net
1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)
1/(1-1/2^-1/2)*1/(1-1/5^-1/2)*(Σ(n=1~∞)(-1)^(n-1)(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2))=-1.46=ζ(1/2)

387:132人目の素数さん
24/01/12 21:17:34.78 Uq67vDTi.net
1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)=0
(Σ(n=1~∞)(-1)^(n-1)(floor[cos(n*2pi/m)^2])/n^(s))=0 1/(m)^s-1/(2m)^s+1/(3m)^s-1/(4m)^s+・・・・=0

floor[cos(n*2pi/m)^2]=floor[1/2 (1+cos((4 n π)/m))]

1/(1-1/2^(zetazero[1]-1))*1/(1-1/15^(zetazero[1]-1))*(Σ(n=1~∞)(-1)^(n-1)(1-15*(floor[1/2 (1+cos((4 n π)/15))]))/n^(zetazero[1]))=0

388:132人目の素数さん
24/01/12 21:43:23.98 Uq67vDTi.net
1/(1-1/2^(s-1))*1/(1-1/m1^(s-1))*1/(1-1/m2^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/m1)^2]))(1-m2*(floor[cos(n*2pi/m2)^2]))/n^(s))=ζ(s)

m1以降に3以上の素数を入れていく
1/(1-1/2^(s-1))*1/(1-1/3^(s-1)*1/(1-1/5^(s-1))*・・・*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/3)^2]))(1-m2*(floor[cos(n*2pi/5)^2]))*・・・)/n^(s))=ζ(s)

Π*1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)

389:132人目の素数さん
24/01/12 21:49:55.32 Uq67vDTi.net
Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)
Π1/(1-1/prime[k]^(s))=ζ(s) Re(s)>1のとき収束
Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s))
(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))になるときs=1/2+iyになる
s=1/2+iyのとき
(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1/2+iy))=Π1/(1-1/prime[k]^(1/2+iy))Π1/(1-1/prime[k]^(-1/2+iy))

390:132人目の素数さん
24/01/12 22:04:53.90 Uq67vDTi.net
(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=0のとき
Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))の中に
(1-1/a^(x+iy))/(1-1/a^(x-1+iy))=0になる素数aが存在する
y=(2nπ-i*ln(a^-x))/ln(a)=2nπ/ln(a)+ix ←非自明なゼロ点のy座標

391:132人目の素数さん
24/01/13 02:02:48.12 IOv4lBIh.net
1/(1-1/2^-1/2)*1/(1-1/3^-1/2)*1/(1-1/5^-1/2)*Σ(n=1~25000)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2)=-1.34223 ←25000を∞にして-1.46に近づく
1/(1-1/2)*1/(1-1/3)*1/(1-1/5)*Σ(n=1~100)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(2)=1.6421734 ←100を∞にしてπ^2/6に近づく
1/(1-1/2^2)*1/(1-1/3^2)*1/(1-1/5^2)*Σ(n=1~25)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(3)=1.20275 ←25を∞にして1.20205に近づく
Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s))
(1-1/a^(x-1+iy))/(1-1/a^(x+iy))=0
y=i(x-1)+2nπ/ln(a)   
(1-1/a^(0+i*2nπ/ln(a))/(1-1/a^(1+2nπ/ln(a)))=0 ←nが整数の時満たす。
ζ(s)=ζ(1-s)
Π1/(1-1/prime[k]^(-s))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1-s))=ζ(1-s)=Π1/(1-1/prime[k]^(1-s))
(1-1/a^(-x-iy))/(1-1/a^(1-x-iy))=0
y'=ix+2nπ/ln(a)   
(1-1/a^(0-i*2nπ/ln(a))/(1-1/a^(1-2nπ/ln(a)))=0 ←nが整数の時満たす。
|y/y'|=1 のときx=1/2

392:132人目の素数さん
24/01/13 16:36:15.00 IOv4lBIh.net
2*5未満の2,5を素因数に持たない集合の和
e^(i*2pi*(1/10))+e^(i*2pi*(3/10))+e^(i*2pi*(7/10))+e^(i*2pi*(9/10))=1
2^2*5未満の2,5を素因数に持たない集合の和
e^(i*2pi*(1/20))+e^(i*2pi*(3/20))+e^(i*2pi*(7/20))+e^(i*2pi*(9/20))+e^(i*2pi*(11/20))+e^(i*2pi*(13/20))+e^(i*2pi*(17/20))+e^(i*2pi*(19/20))=0
3*5未満の3,5を素因数に持たない集合の和
e^(i*2pi*(1/15))+e^(i*2pi*(2/15))+e^(i*2pi*(4/15))+e^(i*2pi*(7/15))+e^(i*2pi*(8/15))+e^(i*2pi*(11/15))+e^(i*2pi*(13/15))+e^(i*2pi*(14/15))=1

3^2*5未満の3,5を素因数に持たない集合の和
e^(i*2pi*(1/45))+e^(i*2pi*(2/45))+e^(i*2pi*(4/45))+e^(i*2pi*(7/45))+e^(i*2pi*(8/45))+e^(i*2pi*(11/45))+e^(i*2pi*(13/45))+e^(i*2pi*(14/45))
+e^(i*2pi*(16/45))+e^(i*2pi*(17/45))+e^(i*2pi*(19/45))+e^(i*2pi*(22/45))+e^(i*2pi*(23/45))+e^(i*2pi*(26/45))+e^(i*2pi*(28/45))+e^(i*2pi*(29/45))
+e^(i*2pi*(31/45))+e^(i*2pi*(32/45))+e^(i*2pi*(34/45))+e^(i*2pi*(37/45))+e^(i*2pi*(38/45))+e^(i*2pi*(41/45))+e^(i*2pi*(43/45))+e^(i*2pi*(44/45))=0
素数x^a*素数y^b未満のx,yを素因数に持たない集合の輪は
a=1 b=1のとき1に収束し
a>1またはb>1のとき0に収束する

393:132人目の素数さん
24/01/13 16:40:39.57 IOv4lBIh.net
素数x^a*素数y^b未満のx,yを素因数に持たない集合の輪は
a=1 b=1のとき1に収束し
a>1またはb>1のとき0に収束するため
素数x^a*素数y^b未満のx,yを素因数に持たない集合の数を若い順からn(k)とするとき
a>1またはb>1のとき
Σ2π*(n(k)/(x^a*y^b)) mod 2π=0 ←Σ(n(k)/(x^a*y^b)) は整数になる

394:132人目の素数さん
24/01/13 16:45:33.80 IOv4lBIh.net
素数x^a*素数y^b未満のx,yを素因数に持たない集合の和は (集合の和=Σ(k=1~m) n(k) )
a>1またはb>1のとき0に収束するため
x^a*y^bを必ず素因数にもつ
Σ(k=1~m) n(k) = (x^a*y^b)*A ←A=任意の整数

395:132人目の素数さん
24/01/13 17:51:24.34 IOv4lBIh.net
Π(k=1~∞)Prime[k]未満の素数Prime[k](k=1~∞)を素因数に持たない集合の和は
Π(k=1~∞)Prime[k]を必ず素因数にもつ
Π(k=1~∞)Prime[k]>X(∞)
Π(k=1~∞)Prime[k]*A=Σ(m=1~∞)X(m) ←X(m)はprime[k]を素因数に持たない
ζ(1/2+iy)=Σ1/n^(1/2+iy)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+・・・
ζ(1/2+iy)=0のとき
Σ2π*(y*ln(n)) mod 2π=0 ←Σ(n=1~∞)(y*ln(n)) は整数になる

396:132人目の素数さん
24/01/13 20:41:37.88 IOv4lBIh.net
5*7未満の素数5,7を素因数に持たない集合の和は
5*7を素因数にもつ
1+2+3+4+6+8+9+11+12+13+16+17+18+19+22+23+24+26+27+29+31+32+33+34
(1+2+3+4+6+8+9+11+12+13+16+17+18+19+22+23+24+26+27+29+31+32+33+34)=(5*7)*12
3*11未満の素数3,11を素因数に持たない集合の和は
3*11を素因数にもつ
1+2+4+5+7+8+10+11+13+14+16+17+19+20+22+23+25+26+28+29+31+32=(3*11)*11
6^2未満の素数6を素因数に持たない集合の和は
6^2を素因数にもつ
1+2+3+4+5+7+8+9+10+11+13+14+15+16+17+19+20+21+22+23+25+26+27+28+29+31+32+33+34+35=6^2*15
3^2未満の素数3を素因数に持たない集合の和は
3^2を素因数にもつ
1+2+4+5+7+8=3^2*3
P未満の素数Pを素因数に持たない集合の和は
Pを素因数にもつ
1+2+3+4+・・・+P-1=P*(P-1)/2
P^2未満の素数Pを素因数に持たない集合の和は
Pを素因数にもつ
1+2+3+・・・・・・(P^2-1)=P*(P*(P^2-1)/2-1)

397:132人目の素数さん
24/01/13 20:55:37.51 IOv4lBIh.net
a^x*b^y未満の素数a,bを素因数に持たない集合の和は
a^x*b^yを素因数にもつ
(1+a^x*b^y)*(a^x*b^y)/2-Σ(a^n*b^m)=(a^x*b^y)*((1+a^x*b^y)/2-1/(a^x*b^y)*Σ(a^n*b^m)) ←1/(a^x*b^y)*Σ(a^n*y^m)これが整数になる必要がある
Σ(a^n*y^m=(a^1*b^0+a^0*b^1+a^1*b^1+a^2*b^1+a^1*b^2+a^2*b^2+・・・・a^(x-1)*b^(y-1)+a^x*b^(y-1)+a^(x-1)*b^y+a^x*b^y)=(a^x*b^y)*A(A=任意の整数)

398:132人目の素数さん
24/01/13 20:57:36.99 xmwcWr1S.net
マユツバで読んでみたけど,ガチだった。
「素数の出現法則」、ついに発見される! 既成概念を根底からくつがえす現象、果たして証明できるのか!?
URLリンク(prtimes.jp)
斬新なアプローチであることは確か。考えたこともなかった方法だったから,色々と勉強になった。
他にもまだまだ法則が見つかっているらしいと匂わせていた。

399:132人目の素数さん
24/01/13 22:48:43.08 IOv4lBIh.net
2*3*5未満の素数2,3,5を素因数に持たない集合の和は
2*3*5を素因数にもつ
30*31/2-(2+3+4+5+6+8+9+10+12+14+15+16+18+20+21+22+24+25+26+27+28+30)=120=(2*3*5)*2^2
2*(1+2+3+4+5+6+7+8+9+11+12+13+14+15)+3*(1+3+5+7+9)+5*(1+5)
30*31/2-(2*120+3*25+5*6)=30*(31/2-(2*120+3*25+30)/30) 
2*3*5*7*11未満の素数2,3,5,7,11を素因数に持たない集合の和は
2*3*5*7*11を素因数にもつ
Π(k=1〜m)(prime[k])未満の素数prime[k](1番目からm番目の素数)を素因数に持たない集合の和は
Π(k=1〜m)(prime[k])を素因数にもつ
(2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと(-1)^nか0になる(nが偶数の時は1,奇数の時は-1)
(-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)

(-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))
(-1)^n=Σe^(i*2pi*(X*P(n+1)/(2^1*3^1*・・・*P(n)^1*P(n+1)))
(-1)^(n+1)=Σe^(i*2pi*(X'/(2*3*・・・*P(n)*P(n+1)))

400:132人目の素数さん
24/01/13 22:54:33.51 IOv4lBIh.net
2
1
e^(i*2π*1/2)=-1
2*3
e^(i*2π*3/6)=-1
2*3
1+5
e^(i*2π*1/6)+e^(i*2π*5/6)=1
2*3*5
5+25
e^(i*2π*5/30)+e^(i*2π*25/30)=1
2*3*5
1+7+11+13+17+19+23+29
e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30)
+e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1

401:132人目の素数さん
24/01/14 01:38:21.78 hK2Tvkd7.net
Π(k=1〜n)(prime[k])未満の素数prime[k](1番目からn番目の素数)を素因数に持たない集合をX(n)[k](k=1~m)とする
(-1)^n=Σ(l=1~m)e^(i*2pi*(X(n)[l]/(Π(k=1〜n)(prime[k])))
e^(i*2π*1/2)=-1
e^(i*2π*1/6)+e^(i*2π*5/6)=1(1,3,5) 上の項目を足したとき
e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30)+e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1(1,5,7,11,13,15,17,19,23,25,29) 上の項目を足したとき
e^(i*2π*1/210)+e^(i*2π*11/210)+e^(i*2π*13/210)+e^(i*2π*17/210)+e^(i*2π*19/210)+e^(i*2π*23/210)+e^(i*2π*29/210)+・・・=1(1,7,11,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき
e^(i*2π*1/2310)+e^(i*2π*17/2310)+e^(i*2π*19/2310)+・・・=-1(1,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき
e^(i*2π*1/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n-1)(prime[k]))+・・・=(-1)^(n-1)
e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+2]/Π(k=1〜n)(prime[k]))+・・・=(-1)^(n)
足していくと2項目以降に
e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+・・・=-1+1-1+1-1+1-1+・・・+(-1)^(n)

402:132人目の素数さん
24/01/14 02:01:49.71 hK2Tvkd7.net
円を重ねて素数の個数を求める
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1))*(11*7)/(2*3*5*7)=21.63 11*7=77未満の素数の個数=21個
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1))*(13*11)/(2*3*5*7*11)=33.36 13*11=143未満の素数の個数=34個
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1))*(17*13)/(2*3*5*7*11*13)=46.35 17*13=221未満の素数の個数=47個

403:132人目の素数さん
24/01/14 02:16:17.32 hK2Tvkd7.net
sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, m}]*prime[m+1]/Product[(Prime[k]), {k, 1, m-1}]=prime[m]*prime[m-1]未満の素数の個数

404:132人目の素数さん
24/01/14 02:20:39.44 hK2Tvkd7.net
sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, 40}]*prime[41]/Product[(Prime[k]), {k, 1, 39}]=3,340  173*179=30967未満の素数3337個

405:132人目の素数さん
24/01/14 21:20:17.44 hK2Tvkd7.net
半径1の円周上に(Π(k=1~n)P(k))(1番目からn番目の素数積) 個の点を均等に分布させる(f(1)=e^(i*2π*1/Π(k=1~n)P(k))からf((Π(k=1~n)P(k)))=e^(i*2π*(Π(k=1~n)P(k))/(Π(k=1~n)P(k)))まで)
この中からf(X)=e^(i*2π*X/Π(k=1~n)P(k)))のXが1番目からn番目までの素数を素因数に含まない点のみにする
f(Y)=e^(i*2π*Σa_k/P(k))) (a_kはP(k)を素因数に含まない)  ←f(Y)=f(X)からXが1番目からn番目までの素数を素因数に含む点をすべて削除したもの
1/(2πi)*ln(f(Y))<P(n+1)^2/(Π(k=1~n)P(k))となるときのa_kが求まれば素数を出せる

Y=e^(i*2π*(1/2+1/3+1/5))
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5)))=1 <7^2
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 <7^2
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+2/3+2/5)))=-13 <7^2

(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7)))=37 <11^2
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+1/3+3/5+1/7)))=-89 <11^2


(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5+5/7+1/11)))=89 <13^2

406:132人目の素数さん
24/01/14 21:39:59.02 hK2Tvkd7.net
Π(k=1~n)(P(k)-1)の大きさでa_kの組み合わせは増えていくため
その中からP(n+1)^2より小さい数を吐き出すa_kの組み合わせを求める必要がある
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+13/11+4/13))) =-10039
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+3/5+1/7+13/11+4/13))) =1973
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11+12/13))) =-10331
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11+1/13))) =10331
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11))) =617
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11))) =-617

(2*3*5*7*11*・・・*P(n))/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11+・・・+1/P(n))))=A
(2*3*5*7*11*・・・*P(n))/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11+・・・+(P(n)-1)/P(n))))=-A
a_kがすべて1のとき吐き出す値に-1をかけるとa_k=分母の素因数-1のとき吐き出す値になる

407:132人目の素数さん
24/01/15 00:21:18.38 Z9hJzEUI.net
(Product[(Prime[k]), {k, 1, 17}])/(2πi)*ln(e^(i*2π*(sum[(-2)^(k-1)/prime[k],{k,1,17}]))) =326065381055471725501

408:132人目の素数さん
24/01/15 01:07:56.79 Z9hJzEUI.net
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 ←7を式に入れる
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3-2/5+2/7)))=11 ←11を式に入れる
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5-8/7+2/11)))=13 ←13を式に入れる 
1からn番目の素数でn+1番目の素数を表現するとき分子は±2^kになる可能性がある

409:132人目の素数さん
24/01/15 01:13:18.08 Z9hJzEUI.net
(2^n) mod prime[k]  =X
prime[k]が何番目の素数でもnを変動させることでXは1からprime[k]-1の間のすべての整数を表現できる

410:132人目の素数さん
24/01/16 18:42:41.48 CGru1Z9S.net
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17

411:132人目の素数さん
24/01/16 20:26:38.61 CGru1Z9S.net
(2*3*5*7*11*13*17)/(2πi)*ln(e^(i*2π*(1/2+a/3+b/5+c/7+d/11+x/13+y/17)))=19
a,b,c,d,x,yに分母の素因数を持たない数を入れて式を満たす組み合わせは一通りだけある

412:132人目の素数さん
24/01/18 00:01:02.52 N7iNgq1x.net
1/(πi)*ln(e^(i*2π*(3/2)))=3
1/(πi)^2*ln(e^(i*2π*(3/2)))*ln(e^(i*2π*(1/2+1/3)))=5
1/(πi)^4*ln(e^(i*2π*(3/2)))^2*ln(e^(i*2π*(1/2+1/3)))*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7
1/(πi)^8*ln(e^(i*2π*(3/2)))^4*ln(e^(i*2π*(1/2+1/3)))^2*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11
1/(πi)^16*ln(e^(i*2π*(3/2)))^8*ln(e^(i*2π*(1/2+1/3)))^4*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^2*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13
1/(πi)^32*ln(e^(i*2π*(3/2)))^16*ln(e^(i*2π*(1/2+1/3)))^8*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^4*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))^2*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17
Prime(n)=1/(πi)^2^(n-1)*Πln(e^(i*2π*(ΣX/Y)))

413:132人目の素数さん
24/01/18 01:08:47.73 N7iNgq1x.net
((3/2))^8*((1/2+1/3)mod1)^4*((1/2+1/3+(2)/5)mod1)^2*((1/2+2/3+3/5+(2)/7)mod1)*((1/2+2/3+4/5+6/7+(2)/11)mod1)*2^16=13

414:132人目の素数さん
24/01/18 01:13:45.99 N7iNgq1x.net
((3/2))^16*((1/2+1/3)mod1)^8*((1/2+1/3+(2)/5)mod1)^4*((1/2+2/3+3/5+(2)/7)mod1)^2*((1/2+2/3+4/5+6/7+(2)/11)mod1)*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*2^32=17

415:132人目の素数さん
24/01/18 01:18:46.81 N7iNgq1x.net
((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+a/3+b/5+c/7+d/11+e/13+f/17)mod1)*2^64=19
a = 3 n_1 + 1, b = 5 n_2 + 2, c = 7 n_3 + 3, d = 11 n_4 + 8, e = 13 n_5 + 11, f = 17 n_6 + 13, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z
((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)*2^64=19

416:132人目の素数さん
24/01/18 01:26:18.00 N7iNgq1x.net
2*3*5*7*11*13*17*19*((1/2+a/3+b/5+c/7+d/11+e/13+f/17+g/19)mod1)=23
a = 3 n_1 + 2, b = 5 n_2 + 1, c = 7 n_3 + 5, d = 11 n_4 + 7, e = 13 n_5 + 11, f = 17 n_6 + 11, g = 19 n_7 + 15, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z, n_7 element Z
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23

417:132人目の素数さん
24/01/18 19:06:56.07 N7iNgq1x.net
2*3*((1/2+1/3)mod1)=5
2*3*5*((1/2+1/3+2/5)mod1)=7
2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11
2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13
2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17
2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
2*3*5*7*11*13*17*19*23*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)mod1)=29

418:132人目の素数さん
24/01/18 20:27:04.58 N7iNgq1x.net
2*3*((1/2+2/3)mod1)=1
2*3*5*((1/2+1/3+1/5)mod1)=1
2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1

419:132人目の素数さん
24/01/20 01:50:25.84 przZ0vAJ.net
ζ(s)=1/(1-2^(s-1))*1/(1-m^(s-1))*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]
ζ(s)=0のとき
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn/m^(1/x)))/(mn/m^(1/x))^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n))/((n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/((mn)^x),{mn, 1, ∞}]=0 ←n=mnも0
n=mn/m^(1/x))^xとおく
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0
mn番目の辺の傾きが
e^(i*Im[zetazero[1]]*[ln(mn)])がe^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])に変動しても0になるときx=1/2

420:132人目の素数さん
24/01/20 01:52:37.03 przZ0vAJ.net
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0
ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0
以下の2つの式が同時に0になるときがx=1/2のときのみ
ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn)^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0

421:132人目の素数さん
24/01/20 10:52:56.98 przZ0vAJ.net
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
x=1/2のとき
nを定数、mを変数としてみたとき符号が反転するのみ
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[-ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0

422:132人目の素数さん
24/01/20 12:15:46.65 rwBYdej7.net
素数(prime number)なので、
p=2(m+3n)-3 ,[m,nは自然数] とおく
m=1,n=1 のとき、p=5
m=2,n=1 のとき、p=7
m=1,n=2 のとき、p=11
m=2,n=2 のとき、p=13
m=1,n=3 のとき、p=17
m=2,n=3 のとき、p=19
m=1,n=4 のとき、p=23
m=1,n=5 のとき、p=29
m=2,n=5 のとき、p=31
m=2,n=6 のとき、p=37
m=1,n=7 のとき、p=41
m=2,n=7 のとき、p=43
m=1,n=8 のとき、p=47
m=1,n=9 のとき、p=53
m=1,n=10 のとき、p=59
m=2,n=10 のとき、p=61


2(m+3n)-3は必ず素数を含む
m,nの並びに規則性はありますか?

423:132人目の素数さん
24/01/20 23:45:50.27 przZ0vAJ.net
2*3*((1/2+1/3)mod1)=5
2*3*5*((1/2+1/3+2/5)mod1)=7
2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11
2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13
2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17
2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
2*3*5*7*11*13*17*19*23*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)mod1)=29
(2*3)^2*((1/2+1/3)^2mod1)=5*5
(2*3*5)^2*((1/2+1/3+2/5)^2mod1)=7*67
(2*3*5*7)^2*((1/2+2/3+3/5+2/7)^2mod1)=11*23*37
(2*3*5*7*11)^2*((1/2+2/3+4/5+6/7+2/11)^2mod1)=13*13873
(2*3*5*7*11*13)^2*((1/2+1/3+2/5+4/7+3/11+12/13)^2mod1)=17*367*491
(2*3*5*7*11*13*17)^2*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)^2mod1)=19*29*140831
(2*3*5*7*11*13*17*19)^2*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)^2mod1)=23*31*3128933
(2*3*5*7*11*13*17*19*23)^2*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^2mod1)=29*37*193*293*853

424:132人目の素数さん
24/01/20 23:50:49.16 przZ0vAJ.net
(Π[k=1~n)P(k))^1*((Σ(k=1~n)(X_k)/P(k))^1 mod 1)=P(n+1)を満たすとき
(Π[k=1~n)P(k))^a*((Σ(k=1~n)(X_k)/P(k))^a mod 1)=P(n+1)*X
aの値によらず出てくる値はP(n+1)(n+1番目の素数)を素因数にもつ

(2*3*5*7*11*13*17*19*23)^5*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^5mod1)=29×128516771×24671352289638928778049497411

425:132人目の素数さん
24/01/21 01:27:30.21 h+lG8rsE.net
2*3*((1/2+2/3)mod1)=1
2*3*5*((1/2+1/3+1/5)mod1)=1
2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1
((2*3)*((1/2+2/3))-1)/(2*3)=1
((2*3*5)*(1/2+1/3+1/5)-1)/(2*3*5)=1
((2*3*5*7)*(1/2+1/3+3/5+4/7)-1)/(2*3*5*7)=2
((2*3*5*7*11)*(1/2+2/3+3/5+1/7+1/11)-1)/(2*3*5*7*11)=2
((2*3*5*7*11*13)*(1/2+2/3+1/5+6/7+6/11+3/13)-1)/(2*3*5*7*11*13)=3
((2*3*5*7*11*13*17)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)-1)/(2*3*5*7*11*13*17)=3
((2*3*5*7*11*13*17*19)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)-1)/(2*3*5*7*11*13*17*19)=5
((2*3*5*7*11*13*17*19*23)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)-1)/(2*3*5*7*11*13*17*19*23)=6
((2*3*5*7*11*13*17*19*23*31)*(1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)-1)/(2*3*5*7*11*13*17*19*23*31)=5

426:132人目の素数さん
24/01/21 01:38:17.45 h+lG8rsE.net
((2*3)*((1/2+1/3))-5)/(2*3)=0
((2*3*5)*(1/2+1/3+2/5)-7)/(2*3*5)=1
((2*3*5*7)*(1/2+2/3+3/5+2/7)-11)/(2*3*5*7)=2
((2*3*5*7*11)*(1/2+2/3+4/5+6/7+2/11)-13)/(2*3*5*7*11)=3
((2*3*5*7*11*13)*(1/2+1/3+2/5+4/7+3/11+12/13)-17)/(2*3*5*7*11*13)=3
((2*3*5*7*11*13*17)*(1/2+1/3+2/5+3/7+8/11+11/13+13/17)-19)/(2*3*5*7*11*13*17)=4
((2*3*5*7*11*13*17*19)*(1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)-1)/(2*3*5*7*11*13*17*19)=5
((2*3*5*7*11*13*17*19*23)*(1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)-1)/(2*3*5*7*11*13*17*19*23)=4

427:132人目の素数さん
24/01/21 16:00:31.91 h+lG8rsE.net
(2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1)=1
(2*3*5*7*11)*((m/2+2m/3+3m/5+m/7+m/11)mod1)=1*m
(2*3*5*7*11)*((13/2+2*13/3+3*13/5+13/7+13/11)mod1)=1*13
(2*3*5*7*11)*((2311/2+2*2311/3+3*2311/5+2311/7+2311/11)mod1)=2311=1=(2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1)
(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((m/2+2m/3+4m/5+6m/7+2m/11)mod1)=13*m
(2*3*5*7*11)*((1/2+2/3+2/5+1/7+4/11)mod1)=13*13

428:132人目の素数さん
24/01/21 16:11:09.54 h+lG8rsE.net
(2*3)*((2*3+1)*(a/2+b/3)mod1)=(2*3)*((a/2+b/3)mod1)=1
(2*3*5)*((2*3*5+1)*(a/2+b/3+c/5)mod1)=(2*3*5)*((a/2+b/3+c/5)mod1)=1
(2*3*5*7)*((2*3*5*7+1)*(a/2+b/3+c/5+d/7)mod1)=(2*3*5*7)*((a/2+b/3+c/5+d/7)mod1)=1
(2*3*5*7*11)*((2*3*5*7*11+1)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=1
(2*3*5*7*11*13)*((2*3*5*7*11*13+1)*(a/2+b/3+c/5+d/7+e/11+f/13)mod1)=(2*3*5*7*11*13)*((a/2+b/3+c/5+d/7+e/11+f/13)mod1)=1

429:132人目の素数さん
24/01/21 16:14:33.59 h+lG8rsE.net
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=m
N1からN5,mに何を入れても満たす

430:132人目の素数さん
24/01/21 16:21:04.65 h+lG8rsE.net
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13)*(1/2+2/3+4/5+6/7+2/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1/2+1/3+1/5+3/7+6/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13

431:132人目の素数さん
24/01/21 16:29:48.78 h+lG8rsE.net
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13*17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13
(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17
(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)は(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)でもあり、(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)でもある

432:132人目の素数さん
24/01/21 16:54:06.76 h+lG8rsE.net
(2^2*3*5*7*11+1)=4621は素数
(2*3*5*7*11)*((2^2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
(2^2*3^2*5*7*11+1)=13861=83*167は非素数
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*83/2+2*83/3+3*83/5+1*83/7+1*83/11)mod1)=83=(2*3*5*7*11)*((1/2+1/3+4/5+6/7+6/11)mod1)
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*167/2+2*167/3+3*167/5+1*167/7+1*167/11)mod1)=167=(2*3*5*7*11)*((1/2+1/3+1/5+6/7+2/11)mod1)
(2*3*5*7*11)*((1*167/2+1*167/3+4*167/5+6*167/7+6*167/11)mod1)=1=(2*3*5*7*11)*((1*83/2+1*83/3+1*83/5+6*83/7+2*83/11)mod1)

433:132人目の素数さん
24/01/21 17:44:01.61 h+lG8rsE.net
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b

2*3*5*7*11+13*17=2531は素数

(2*3*5*7*11)*((1*13/2+2*13/3+3*13/5+1*13/7+1*13/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((1*17/2+2*17/3+3*17/5+1*17/7+1*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17
(2*3*5*7*11)*((1*13*17/2+2*13*17/3+3*13*17/5+1*13*17/7+1*13*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17

(2*3*5*7*11)*0+13*17=221は非素数
(2*3*5*7*11)*(((2*3*5*7*11)*0+13)(1/2+2/3+3/5+1/7+1/11)mod1)=13
(2*3*5*7*11)*(((2*3*5*7*11)*0+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17
(2*3*5*7*11)*((1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=221=13*17=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)

2*3*5*7*11-13*17=2089は素数
(2*3*5*7*11)*((2*3*5*7*11*1-13)(1/2+2/3+3/5+1/7+1/11)mod1)=2297
(2*3*5*7*11)*((2*3*5*7*11*1+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17
(2*3*5*7*11)*((2*3*5*7*11*1-13*17)(1/2+2/3+3/5+1/7+1/11)mod1)=2089

(2*3*5*7*11)*((2*3*5*7*11*1-13)(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)≠(2*3*5*7*11)*((2*3*5*7*11*1+17)(1*-13/2+1*-13/3+1*-13/5+3*-13/7+6*-13/11)mod1)
となり等しくならないため


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

139日前に更新/368 KB
担当:undef