素数の規則を見つけたい。。。 at MATH
[2ch|▼Menu]
[前50を表示]
300:132人目の素数さん
23/12/30 11:19:50.17 jsoLHdB8.net
ζ(s)=Σ1/n^s
(1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s
ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s
ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46

301:132人目の素数さん
23/12/30 11:37:17.40 jsoLHdB8.net
ζ(s)=1/(1-2^(2/3))*Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ1/n^(1/3)=1+1/2^(1/3)+1/3^(1/3)-1/4^(1/3)+・・・
1/2^(1/3)*Σ1/n^(1/3)=1/2^(1/3)+1/4^(1/3)+6^(1/3)+・・・
Σ1/n^(1/3)-2*1/2^(1/3)*Σ1/n^(1/3)=Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ(-1)^(n+1)/n^(1/3)=(1-2^(2/3))*Σ1/n^(1/3)
(1-2^(2/3))*Σ1/n^(1/3)=Σ(n=1〜∞) (-1)^(n+1)/(n^(1/3))≒0.572
ζ(1/3)=0.572/(1-2^(2/3))≒-0.97
ζ(1/3)=1/(1-2^(2/3))*(1-2^(2/3))*Σ1/n^(1/3)≒-0.97

302:132人目の素数さん
23/12/30 12:07:17.28 jsoLHdB8.net
ζ(1/2+i*y)=Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0
ζ(1/2+i*y)=1/(1-1/2^(-1/2+i*y))*Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 ←Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0
Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0でもあり、Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0もある
1/1^s+1/2^s+1/3^s+1/4^s+・・・・=0
1/1^s-1/2^s+1/3^s-1/4^s+・・・・=0
1/1^s+1/3^s+1/5^s+1/7^s+・・・・=0
1/2^s+1/4^s+・・・・=0
Σ1/(2n)^(1/2+i*y)=0
Σ1/(2n+1)^(1/2+i*y)=0

303:132人目の素数さん
23/12/30 20:00:06.26 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/42

304:132人目の素数さん
23/12/30 20:14:12.74 jsoLHdB8.net
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
+1/42
=-1.436535803101403675249612014725209082488526639894421611110168217≒-1.46=ζ(1/2=
-1.464072106873427134267436827982618352404737194303297963507762570
0.0037267799624996494940152894478854603924010305993525428737848287
-9.316949906249123735038223619713650981002576498381357184462... × 10^-6
1.3975424859373685602557335429570476471503864747572035776693... × 10^-7
+1/42

305:132人目の素数さん
23/12/30 20:35:30.01 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
+1/42
=-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2)
-1.464072106873427134267436827982618352404737194303297963507762570
0.0037267799624996494940152894478854603924010305993525428737848287
-9.316949906249123735038223619713650981002576498381357184462... × 10^-6
1.3975424859373685602557335429570476471503864747572035776693... × 10^-7

306:132人目の素数さん
23/12/30 20:36:01.86 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
=-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2)

307:132人目の素数さん
23/12/30 21:16:29.25 jsoLHdB8.net
ζ(x+i*y')-ζ(x+i*y)=1-1+1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2))
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1+(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/4^(x/2+i*y'/2)-1/4^(x/2+i*y/2)=1/2^(x+i*y')-1/2^(x+i*y)=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
1/2^(x/2+i*y/2+i*π/2)=-1/2^(x/2+i*y/2)
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))*(1+(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2))))
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)+1/2^(x/4+i*y/4+i*π/4))
1/2^(x/4+i*y/4+i*π/4+i*π/2)=-1/2^(x/4+i*y/4+i*π/4)
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4+i*π/2))
=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/8+i*y'/8)-1/2^(x/8+i*y/8+i*π/8+i*π/8))**(1/2^(x/8+i*y'/8)+1/2^(x/8+i*y/8+i*π/8+i*π/8))
無限に分解していく際にx=1/2でないと都合が悪い可能性がある(1/2^nで実部を表せない)

308:132人目の素数さん
23/12/30 22:03:36.06 jsoLHdB8.net
1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y)
ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する
ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0
lim[n→∞]Σ[k=1→n]i*π/ln2^k=i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2=i*π*∞ mod 2π
nの値が無限でないときlim[n→m]Σ[k=1→n]i*π/ln2^kのときΣ[k=1→n]i*π/ln2^kはmod 2πされるため0から2πの値をとる
A=2^’x/2^m)*e^(i*y') B=2^(x/2^m)*e^(i*y+lim[n→m]Σ[k=1→n]i*π/ln2^k)
AとBの角度差がlim[n→m]Σ[k=1→n]i*π/ln2^kと可変する
長さが半分になり続ける2本のベクトルの間のベクトルの積とみなせるため
初期値が1/2でないと0に収束しない可能性がある
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2))
*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2+i*π/ln2))

309:132人目の素数さん
23/12/30 22:26:56.47 jsoLHdB8.net
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2)
*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
2ベクトルの角度差がy'-y+lim[n→m]Σ[k=a→n]i*π/ln2^k)と可変する
長さは1/2^(x/2^m)になる
初期値が1/2でないと0に収束しない可能性がある

310:132人目の素数さん
23/12/31 13:06:56.21 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ←  Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する

311:132人目の素数さん
23/12/31 13:32:01.36 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ←  Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) ←0に収束する必要がある
Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) ←0に収束する必要がある
Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ←0に収束する必要がある
2^a*1/2^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
2^a*1/3^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
2^a*1/4^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2)

312:132人目の素数さん
23/12/31 14:52:49.83 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)

|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2)

|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))*lnP(n)/2)

|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ←  Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する

Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) ←0に収束する必要がある
Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) ←0に収束する必要がある
Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ←0に収束する必要がある



|ζ(x+i*y')-ζ(x+i*y)|=lim ΣΠ2^a*1/P(l)^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(l)^k))*lnP(l)/2)=0
これが収束するときにx=1/2しかない可能性がある

313:132人目の素数さん
23/12/31 17:11:21.67 ZQRjm/0R.net
|ζ(x+i*y')-ζ(x+i*y)|=1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/2^(x+i*y')-1/2^(x+i*y)=2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))
1/3^(x+i*y')-1/3^(x+i*y)=2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))
1/4^(x+i*y')-1/4^(x+i*y)=2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2))
5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
ζ(x+i*y')-ζ(x+i*y)≒2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))+2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))+2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
がx≠1/2のときy,y'をもたない(y≠y'>0)

314:132人目の素数さん
23/12/31 17:28:27.05 ZQRjm/0R.net
(1/2^(1/2+i*5π/(7*ln2))-1/2^(1/2+i*π/(7*ln2)))=(2*1/2^(1/2)*sin((4π/(7*ln2))*ln2/2))*e^(i*tan^(-1)((sin(π/7)/sqrt(2) - cos((3 π)/14)/sqrt(2))/(-sin((3 π)/14)/sqrt(2) - cos(π/7)/sqrt(2))) - i*π)

315:132人目の素数さん
23/12/31 21:13:13.10 ZQRjm/0R.net
(1/p(n)^(x+i*y')-1/p(n)^(x+i*y))=(2*1/p(n)^(x)*sin((y'-y)*lnp(n)/2)*e^(i*(arctan((-sin(y'*logp(n))+sin(ylogp(n)))/(cos(y'logp(n))-cos(ylogp(n))))+π)))

(1/2^(x+i*y')-1/2^(x+i*y))=(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
(1/3^(x+i*y')-1/3^(x+i*y))=(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
(1/4^(x+i*y')-1/4^(x+i*y))=(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))


5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))

ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
がx≠1/2のときy,y'をもたない(y≠y'>0)

316:132人目の素数さん
23/12/31 21:27:12.79 ZQRjm/0R.net
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないとの仮定が正しいとき(y'≠y>0)
ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))をA*e^(i*B)にかえて
AがX≠1/2のとき0にならないことを証明すれば実部が1/2のみであることになる

317:132人目の素数さん
23/12/31 22:15:02.20 ZQRjm/0R.net
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・

((4/3)*cos((n-1)*2π/3)-1/3)=1,1,-2,1,1,-2,1,1,・・・

(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s

ζ(s)=1/(1-1/3^(s-1))*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s

ζ(1/2)=1/(1-√3)*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s=-1.46=1/(1-√2)*Σ(-1)^(n-1)/n^s

318:132人目の素数さん
23/12/31 22:24:09.99 ZQRjm/0R.net
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・

-2*cos((n)*2π/3))=1,1,-2,1,1,-2,1,1,・・・

(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ(-2*cos((n)*2π/3))/n^s

ζ(s)=1/(1-1/3^(s-1))*Σ(-2*cos((n)*2π/3))/n^s

ζ(1/2)=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n

319:132人目の素数さん
23/12/31 22:40:13.18 ZQRjm/0R.net
(1-1/4^(s-1))ζ(s)=Σ1/n^(s)-4*Σ1/(4n)^s=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・

((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1,・・・

ζ(s)=1/(1-1/4^(s-1))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/n^s

ζ(1/2)=1/(1-√4)*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n

320:132人目の素数さん
23/12/31 22:59:36.79 ZQRjm/0R.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x-2*e^(i*-y*ln(n))/3^x+e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-3*e^(i*-y*ln(n))/4^x+・・・)
1/(1-1/2^(x-1+i*y))←この項目を無視して
(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)だけ0になればいい
1,1,1,1,-5,1,1,1,1,-5,1,1,1,1,-5でも0
1,1,1,1,1,-6,1,1,1,1,1,-6,でも0
1がn回連続して-(n+1)が1回出る関数をf(X)にする
Σf(X)*1/n^x*e^(i*-yln(n))=0になるときx=1/2のみになればいい

321:132人目の素数さん
24/01/01 00:52:54.27 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-3/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2*1/3^s+3/4^s+1/5^s-2*1/6^s+1/7^s+3/8^s-2*1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m)=1がm-1回連続し、-mが1回でる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ

322:132人目の素数さん
24/01/01 01:14:02.39 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ]

(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
Σ1/(2n-1)^s-Σ1/(2n)^s=0
(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0になるため
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
(1/1^s+1/2^s+1/3^s+・・・+1/(m-1)^s-(m-1)/(m)^s+1/(m+1)^s+・・・+1/(2m-1)^s-(m-1)/(2m)^s+・・・)=0になるため
Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s-(m-1)*Σ1/(mn)^s=0
Σ1/(mn)^s=1/(m-1)*(Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s)=0 ←s=1/2+i*yのときのみ成り立つことを証明すればいいため
Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s=A*e^(i*B)としてx≠1/2のときA≠0を示せばいい

323:132人目の素数さん
24/01/01 02:30:35.12 7BKpZ/zg.net
Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s
↓に代入すると
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s)
x=1/2のときのみ成り立つことを示す

324:132人目の素数さん
24/01/01 11:26:45.50 7BKpZ/zg.net
ζ(-1+i*0)=1+1/2^(-1+i*0)+1/3^(-1+i*0)+1/4^(-1+i*0)+5^(1-(1/2+i*0))/(-1+i*0-1)+5^(-(-1+i*0))/2 ←0
+1/6*1/2!*5^(1-(-1+i*0)-2)*(-1+i*0) ←-1/12
-1/30*1/4!*5^(1-(-1+i*0)-4)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2) ←0
+1/42*1/6!*5^(1-(-1+i*0)-6)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2)*(-1+i*0+3)*(-1+i*0+4) ←0
+1/R2k
ζ(-1+i*0)=Σn=1+2+3+4+5+・・・=-1/12

325:132人目の素数さん
24/01/01 12:05:19.67 7BKpZ/zg.net
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0

Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0

Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす

326:132人目の素数さん
24/01/01 14:57:41.26 7BKpZ/zg.net
Σ1/(n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(n)^s
Σ1/(2n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(2n)^s
Σ1/(2n-1)^s =1/(1-1/(2)^(s-1))*(Σ(-1)^(n-1)/(n)^s-Σ(-1)^(n-1)/(2n)^s)
Σ1/(2n-1)^s =(1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(2n)^(s)))
Σ1/(2n-1)^s =1+1/√3+1/√5+1/√7+・・・≒-0.42

327:132人目の素数さん
24/01/01 15:15:03.85 7BKpZ/zg.net
(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)
=Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する

328:132人目の素数さん
24/01/01 15:29:41.02 7BKpZ/zg.net
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(n)^s-Σ1/(3n)^s=Σ1/(3n-2)^s+Σ1/(3n-1)^s
Σ(n=1〜∞) 1/(3n-2)^(s)+Σ(n=1〜∞) 1/(3n-1)^(s)=1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))
1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 ←s=1/2+i*yのときのみ満たす

329:132人目の素数さん
24/01/01 15:34:52.20 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 3*(Σ(n=1〜∞) (-1)^(n-1)/(3n)^(1/2+i*14.1347))=6.82869×10^-6 - 0.000128656 i ←ほぼ0になる

330:132人目の素数さん
24/01/01 15:40:54.11 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*y)) - m*(Σ(n=1〜∞) (-1)^(n-1)/(mn)^(1/2+i*y)) ←1/2+i*yがゼロ点のときmに整数を入れるとほぼ0になる
1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s) ←1/(1-1/2^(s-1))は値を補正する項なもののゼロ点の時無視できるため
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 4*(Σ(n=1〜∞) (-1)^(n-1)/(4n)^(1/2+i*14.1347))=0.0000654354 + 0.0000182958 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 5*(Σ(n=1〜∞) (-1)^(n-1)/(5n)^(1/2+i*14.1347))=-0.0000801562 - 0.000119567 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 125*(Σ(n=1〜∞) (-1)^(n-1)/(125n)^(1/2+i*14.1347))=-0.000385263 + 0.000318602 i

331:132人目の素数さん
24/01/01 20:57:48.03 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347251417346937904572519835624702707842)) - 10000*(Σ(n=1〜∞) (-1)^(n-1)/(10000n)^(1/2+i*14.1347251417346937904572519835624702707842))
=-0.×10^-38 + 0.×10^-38 i ←ゼロ点の精度が上がるほど0に近づく

332:132人目の素数さん
24/01/01 22:23:45.62 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^s)=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^s)=1/(1-1/3^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s)=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^s))=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^s))=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s))=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)((F(m-1))*1/n^s))=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)=0
m-1の値ごとに分子の数が異なるものの、ゼロ点のときすべて0に収束する
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)((F(m-1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)

333:132人目の素数さん
24/01/01 22:43:59.96 7BKpZ/zg.net
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))==(Σ(n=1〜∞)1/(2n-1)^s)-(Σ(n=1〜∞)1/(2n)^s)
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
=(Σ(n=1〜∞)1/(n)^s)-2*(Σ(n=1〜∞)1/(2n)^s)=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-2*(Σ(n=1〜∞)(-1)^(n-1)/(2n)^s))

334:132人目の素数さん
24/01/01 23:02:03.66 7BKpZ/zg.net
mに任意の整数を入れ、sがゼロ点の時
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-m*(Σ(n=1〜∞)(-1)^(n-1)/(mn)^s)=0になる←(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)を正規化
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/s)*n)^s)
m^(1-1/s)*nのmとn(次数1)の次数が等しくなるためにはs=1/2+i*yである必要がある
(1-1/(1/2+i*y))=(2 y + i)/(2 y - i) ←|(2 y + i)/(2 y - i)|=1のため次数1

335:132人目の素数さん
24/01/01 23:53:19.63 7BKpZ/zg.net
zetazero(k)=k番目の非自明なゼロ点
m、kにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(k))-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/zetazero(k))*n)^zetazero(k))=0

(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(1))-(Σ(n=1〜∞)(-1)^(n-1)/(2^(1-1/zetazero(1))*n)^zetazero(1))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(2))-(Σ(n=1〜∞)(-1)^(n-1)/(31^(1-1/zetazero(2))*n)^zetazero(2))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(12))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/zetazero(12))*n)^zetazero(12))=0

(Σ(n=1〜∞)(-1)^(n-1)/(n)^(1/10+zetazero(12)))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/(1/10+zetazero(12)))*n)^(1/10+zetazero(12)))≒-4.49761 + 2.32023 i ←1/2からずれるとゼロ点にならない

336:132人目の素数さん
24/01/02 00:33:09.00 xRdffKCJ.net
x+i*y=非自明なゼロ点
mにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))=0

Σ(n=1〜∞)(-1)^(n-1)/(m^((s-1)/(s))*1)^(s)=1/(m^((s-1)/(s))*1)^(s)-1/(m^((s-1)/(s))*2)^(s)+1/(m^((s-1)/(s))*3)^(s)-1/(m^((s-1)/(s))*4)^(s)+・・・

m^((s-1)/(s))=e^(ln(m)*(s-1)/(s)) ←|(s-1)/(s)|がx≠1/2のときyにより変動してしまうx=1/2のときy≠i/2を除き1で一定する
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))の分母の長さが変動してしまうため0に収束しなくなる

337:132人目の素数さん
24/01/02 00:36:21.02 xRdffKCJ.net
Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+・・・←x≠1/2のときyが変動することでxに影響を与える可能性がある(分母の大きさが変動する可能性がある)

338:132人目の素数さん
24/01/03 00:33:11.16 mP/SslTt.net
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.47935388・・・

339:132人目の素数さん
24/01/03 00:42:04.36 mP/SslTt.net
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
=-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
=-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・
1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・
=-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・
1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・
=-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4)

340:132人目の素数さん
24/01/03 00:46:22.06 mP/SslTt.net
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
=-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
=-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・
1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・
=-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・
1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・
=-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4)

341:132人目の素数さん
24/01/03 00:55:45.53 mP/SslTt.net
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
m=5のとき1,1,1,1,-4のとき
(Σ(n=1〜∞)(F(4))*1/n^(s))
=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^s))
(Σ(n=1〜∞)(F(4))*1/n^(1/2))=1.805=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)+1/4^(1/2)-4/5^(1/2)+1/6^(1/2)+・・・
=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))=1.805097444・・・
(Σ(n=1〜∞)(F(m-1))*1/n^(1/2))=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(1/2)))
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))

342:132人目の素数さん
24/01/03 01:01:34.83 mP/SslTt.net
F(2)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・
F(3)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・
F(4)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))

343:132人目の素数さん
24/01/03 01:14:29.37 mP/SslTt.net
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
=1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s)))

1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))
=1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-5*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(5n)^(1/2)))
=(sqrt(5) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))≈1.8050974441369647866219120691103300362558013984562195806889193118468626278195508722313989372865636
=(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(5) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/(1 - sqrt(3))≈1.805097444136964786621912069110330036255801398456219580688919311846862627819550872231398937286564 + 0.×10^-96 i

344:132人目の素数さん
24/01/03 01:25:56.12 mP/SslTt.net
F(0)=0=0,0,0,0,0,0,0,0,・・・
F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・
F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・
F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
=1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s)))
m=1のとき
(Σ(n=1〜∞)(F(0))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-1*(Σ(n=1〜∞)(-1)^(n-1)*1/(1*n)^(s)))=0
=1/(1-1/1^(s-1))*(((Σ(n=1〜∞)F(0)*1/n^(s)))-1*(Σ(n=1〜∞)F(0)*1/(1*n)^(s)))=0

345:132人目の素数さん
24/01/03 23:43:59.78 mP/SslTt.net
a^n+b^n≠c^n (a,b,c,は互いに素)
n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる
x1=x2=x3にならない(x1=x2=x3=0を除く) 
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n))
e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3))
x1 = -8, x2 = 7, x3 = 1
x1 = 0, x2 = 0, x3 = 0
x1 = 8, x2 = -7, x3 = -1
e^(i*2π*(8/(3*5)^3-7/(2*5)^3))=e^(i*2π*(-1/(2*3)^3))=e^(-(i π)/108)
e^(i*2π*(x1/(5*7)^3+x2/(2*7)^3))=e^(i*2π*(x3/(2*5)^3))
x1 = -8, x2 = 6, x3 = 2
x1 = -4, x2 = 3, x3 = 1
x1 = 0, x2 = 0, x3 = 0
x1 = 4, x2 = -3, x3 = -1
x1 = 8, x2 = -6, x3 = -2

346:132人目の素数さん
24/01/04 00:06:08.79 HQkE/6B8.net
e^(i*2π*(a/(2)^3+b/(3)^3+c/(5)^3))=e^(i*2π*(x3/(2*3*5)^3))
1>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7^2/(2*3*5)^3))のとき
cos(2π*(7^2/(2*3*5)^3))>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7*11/(2*3*5)^3))
x3=素数 a≠2,b≠3,c≠5
e^(i*2π*(x1/(3*5^2)^3+x2/(2*5^2)^3))=e^(i*2π*(x3/(2*3*5)^3))
x1 = 8, x2 = -7, x3 = -1 
e^(i*2π*(8/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(1/(2*3*5)^3))
e^(i*2π*(9/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(13/(2*3*5)^3))
e^(i*2π*(8/(3*5^2)^3-5/(2*5^2)^3))=e^(i*2π*(-71/(2*3*5)^3)) ←ずらすのが容易になる

347:132人目の素数さん
24/01/04 00:56:35.97 HQkE/6B8.net
a^n+b^n≠c^n (a,b,c,は互いに素)
n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる
x1=x2=x3にならない(x1=x2=x3=0を除く) 
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) ←が成り立つとするx1≠x2≠x3
x3 = -(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n+(x1-x3)/(a*b)^n))=e^(i*2π*(x3/(a*b)^n+(x1-x3)/(a*b)^n)))=e^(i*2π*(x1/(a*b)^n))
x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nであることを示せばいい
x2/(a*c)^n+(x1-(-(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)))/(a*b)^n=x1/(a*c)^n
x1 (a b)^(-n) - x1 (b c)^(-n) - c_1 = x1 (a c)^(-n) 
(a b)^n (a c)^n Subscript["c", 1] == (a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)←n>=3以上のときc1≠0のため
x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nになるためa^n+b^n≠c^n

348:132人目の素数さん
24/01/04 01:13:55.61 HQkE/6B8.net
(3 4)^2 (3 5)^2 *C = (3 5)^2 x1 + ((3 4)^2 (-2 Pi x1 + 2 Pi x2 + I (3 5)^2 Log[E^(((2 I) Pi x1)/(4 5)^2 + ((2 I) Pi x2)/(3 5)^2)]))/(2 Pi)
32400 C = (16200 i log(e^((i π x1)/200 + (2 i π x2)/225)))/π + 81 x1 + 144 x2=0 ←n=2 a=3,b=4,c=5のときC=0のため3^2+4^2=5^2
(3 4)^3 (3 5)^3 *C = (3 5)^3 x1 + ((3 4)^3 (-2 Pi x1 + 2 Pi x2 + I (3 5)^3 Log[E^(((2 I) Pi x1)/(4 5)^3 + ((2 I) Pi x2)/(3 5)^3)]))/(2 Pi)
5832000 C - 918 x1 = 0 ←n=3 a=3,b=4,c=5のときC≠0のため3^3+4^3≠5^3

349:132人目の素数さん
24/01/04 01:42:18.75 HQkE/6B8.net
n>=3のときC=0を満たす、x1=x2、a,b,c,の整数が存在しない
C=(a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)
=((a c)^n (2 π x1 + i (a b)^n log(e^(2 i π x1 ((a c)^(-n) + (b c)^(-n))))))/(2 π)
=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) ←が0になればa^n+b^n=c^nを満たす x1=1にする
(2 π + i (3 4)^2 log(e^(2 i π ((3 5)^(-2) + (4 5)^(-2)))))=0 のためn=2 のときa=3 b=4 c=5
(2 π + i (3 4)^3 log(e^(2 i π ((3 5)^(-3) + (4 5)^(-3)))))=(68 π)/125のため3^3+4^3≠5^3

350:132人目の素数さん
24/01/04 01:46:40.11 HQkE/6B8.net
f(n)=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n)))))
f(n)のnが3より大きいときf(n)=0をみたすa,b,cの格子点を通らないため(同時に整数にならないため)
n>=3のときa^n+b^n≠c^n

351:132人目の素数さん
24/01/05 22:47:47.72 J9agiAXK.net
1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-2*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(2n)^(1/2)))=-1.46
(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(2) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035 + 0 i
1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-3*(Σ(n=1〜∞)(-1)^(n-1)*1/(3n)^(1/2)))=-1.46
(sqrt(3) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035
1/(1-1/2^(1/2-1))^2*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-2*(Σ(n=1〜∞)(-1)^(n-1)*1/(2n)^(1/2)))=-1.46
(-(sqrt(2) - 2) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))^2≈-1.46035

352:132人目の素数さん
24/01/06 01:31:00.08 MvCtGzfL.net
-((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3]))
-((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3]))=1/( (1 - Sqrt[3]))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(1/2))=-1.46
-((PolyLog[-1, -(-1)^(1/3)] + PolyLog[-1, (-1)^(2/3)]))/( (1 -1/3^(-1-1)))=1/( (1 -1/3^(-1-1)))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(-1))=-1/12 + 0 i
x^2+x+1=0
x=cos(2pi*n/3)+i*sin(2pi*n/3)
x^4+x^3+x^2+x+1=0
x=cos(2pi*n/5)+i*sin(2pi*n/5)
x^6+x^5+x^4+x^3+x^2+x+1=0
x=cos(2pi*n/7)+i*sin(2pi*n/7)

353:132人目の素数さん
24/01/06 17:33:59.67 MvCtGzfL.net
e^(iπ)+1=0
e^(i*4π/3)+e^(i*2π/3)+1=0
e^(i*6π/4)+e^(i*4π/4)+e^(i*2π/4)+1=0
e^(i*8π/5)+e^(i*6π/5)+e^(i*4π/5)+e^(i*2π/5)+1=0
e^(iπ)=Σ(k=1〜n-1)e^(i*2π*k/n) (1<=k<=n-1)

e^(iπ)=Σ(k=1〜2*3*5-1)e^(i*2π*k/(2*3*5))

354:132人目の素数さん
24/01/06 20:51:12.58 MvCtGzfL.net
1,2,3,4,5,6,
1,5
2,3,4,6
e^(i2π)=e^(i*2π*1/(2*3))+e^(i*2π*5/(2*3))
2,3,4,6

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
1,7,11,13,17,19,23,29
2,3,4,5,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,
e^(iπ)=e^(i*2π*1/(2*3*5))+e^(i*2π*7/(2*3*5))+e^(i*2π*11/(2*3*5))+e^(i*2π*13/(2*3*5))+e^(i*2π*17/(2*3*5))+e^(i*2π*19/(2*3*5))+e^(i*2π*23/(2*3*5))+e^(i*2π*29/(2*3*5))

355:132人目の素数さん
24/01/06 21:01:35.48 MvCtGzfL.net
2^2*3*5
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60
0=e^(i*2π*1/(4*3*5))+e^(i*2π*7/(4*3*5))+e^(i*2π*11/(4*3*5))+e^(i*2π*13/(4*3*5))+e^(i*2π*17/(4*3*5))+e^(i*2π*19/(4*3*5))+e^(i*2π*23/(4*3*5))+e^(i*2π*29/(4*3*5)) ←5.33i
+e^(i*2π*31/(4*3*5))+e^(i*2π*37/(4*3*5))+e^(i*2π*41/(4*3*5))+e^(i*2π*43/(4*3*5))+e^(i*2π*47/(4*3*5))+e^(i*2π*49/(4*3*5))+e^(i*2π*53/(4*3*5))+e^(i*2π*59/(4*3*5)) ←-5.33i
(2^2*3*5)未満の2,3,5,を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^2*3*5))

356:132人目の素数さん
24/01/06 21:27:13.46 MvCtGzfL.net
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
a=3 b=1 c=1のとき 0になる
0=e^(i*2π*1/(8*3*5))+e^(i*2π*7/(8*3*5))+e^(i*2π*11/(8*3*5))+e^(i*2π*13/(8*3*5))+e^(i*2π*17/(8*3*5))+e^(i*2π*19/(8*3*5))+e^(i*2π*23/(8*3*5))+e^(i*2π*29/(8*3*5))
←(5.132689822507279173528306376440040126225812904101791511905651606... +
5.132689822507279173528306376440040126225812904101791511905651606... i)
+e^(i*2π*31/(8*3*5))+e^(i*2π*37/(8*3*5))+e^(i*2π*41/(8*3*5))+e^(i*2π*43/(8*3*5))+e^(i*2π*47/(8*3*5))+e^(i*2π*49/(8*3*5))+e^(i*2π*53/(8*3*5))+e^(i*2π*59/(8*3*5))
←(-5.132689822507279173528306376440040126225812904101791511905651606... +
5.132689822507279173528306376440040126225812904101791511905651606... i)
+e^(i*2π*61/(8*3*5))+e^(i*2π*67/(8*3*5))+e^(i*2π*71/(8*3*5))+e^(i*2π*73/(8*3*5))+e^(i*2π*77/(8*3*5))+e^(i*2π*79/(8*3*5))+e^(i*2π*83/(8*3*5))+e^(i*2π*89/(8*3*5))
←(-5.132689822507279173528306376440040126225812904101791511905651606... -
5.132689822507279173528306376440040126225812904101791511905651606... i)
+e^(i*2π*91/(8*3*5))+e^(i*2π*97/(8*3*5))+e^(i*2π*101/(8*3*5))+e^(i*2π*103/(8*3*5))+e^(i*2π*107/(8*3*5))+e^(i*2π*109/(8*3*5))+e^(i*2π*113/(8*3*5))+e^(i*2π*119/(8*3*5))
←(5.132689822507279173528306376440040126225812904101791511905651606... -
5.132689822507279173528306376440040126225812904101791511905651606... i)

357:132人目の素数さん
24/01/06 21:31:31.07 MvCtGzfL.net
1<=A<=2^a*3^b*5^c
0=Σe^(i*2pi*(A/(2^a*3^b*5^c))  ←全方位を足すことになるため0に収束する
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))  になるため
Σe^(i*2pi*(A/(2^a*3^b*5^c))-Σe^(i*2pi*(X/(2^a*3^b*5^c)=0 ←2,3,5,を素因数に持つ数の分子のみを足しても0になる

358:132人目の素数さん
24/01/06 22:46:01.52 MvCtGzfL.net
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
a=1 b=2 c=1のとき 0になる
0=e^(i*2π*1/(2*9*5))+e^(i*2π*7/(2*9*5))+e^(i*2π*11/(2*9*5))+e^(i*2π*13/(2*9*5))+e^(i*2π*17/(2*9*5))+e^(i*2π*19/(2*9*5))+e^(i*2π*23/(2*9*5))+e^(i*2π*29/(2*9*5))
←3.3587707643070619775468762345+5.817561614756781915987196652591 i
+e^(i*2π*31/(2*9*5))+e^(i*2π*37/(2*9*5))+e^(i*2π*41/(2*9*5))+e^(i*2π*43/(2*9*5))+e^(i*2π*47/(2*9*5))+e^(i*2π*49/(2*9*5))+e^(i*2π*53/(2*9*5))+e^(i*2π*59/(2*9*5))
←-6.7175415286141239550937524691565827376
+e^(i*2π*61/(2*9*5))+e^(i*2π*67/(2*9*5))+e^(i*2π*71/(2*9*5))+e^(i*2π*73/(2*9*5))+e^(i*2π*77/(2*9*5))+e^(i*2π*79/(2*9*5))+e^(i*2π*83/(2*9*5))+e^(i*2π*89/(2*9*5))
3.3587707643070619775468762345-5.817561614756781915987196652591 i

359:132人目の素数さん
24/01/07 00:36:17.90 SsbMX1Ts.net
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
43個
121, 143, 169, 187, 209 ←11以上の素数の積
43+5=48=(2^1-2^0)*(3^1-3^0)*(5^1-5^0)*(7^1-7^0)
e^(i*2π*1/(210))+e^(i*2π*11/(210))+e^(i*2π*13/(210))+e^(i*2π*17/(210))+e^(i*2π*19/(210))+e^(i*2π*23/(210))+e^(i*2π*29/(210))+e^(i*2π*31/(210))
+e^(i*2π*37/(210))+e^(i*2π*41/(210))+e^(i*2π*43/(210))+e^(i*2π*47/(210))+e^(i*2π*53/(210))+e^(i*2π*59/(210))+e^(i*2π*61/(210))+e^(i*2π*67/(210))
+e^(i*2π*71/(210))+e^(i*2π*73/(210))+e^(i*2π*79/(210))+e^(i*2π*83/(210))+e^(i*2π*89/(210))+e^(i*2π*97/(210))+e^(i*2π*101/(210))+e^(i*2π*103/(210))
+e^(i*2π*107/(210))+e^(i*2π*109/(210))+e^(i*2π*113/(210))+e^(i*2π*121/(210))+e^(i*2π*127/(210))+e^(i*2π*131/(210))+e^(i*2π*137/(210))+e^(i*2π*139/(210))
+e^(i*2π*143/(210))+e^(i*2π*149/(210))+e^(i*2π*151/(210))+e^(i*2π*157/(210))+e^(i*2π*163/(210))+e^(i*2π*167/(210))+e^(i*2π*169/(210))+e^(i*2π*173/(210))
+e^(i*2π*179/(210))+e^(i*2π*181/(210))+e^(i*2π*187/(210))+e^(i*2π*191/(210))+e^(i*2π*193/(210))+e^(i*2π*197/(210))+e^(i*2π*199/(210))+e^(i*2π*209/(210))


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

139日前に更新/368 KB
担当:undef