素数の規則を見つけた ..
268:132人目の素数さん
23/12/25 00:10:58.83 cm14oBhI.net
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
約P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))個の素数がある
269:132人目の素数さん
23/12/25 00:16:21.61 cm14oBhI.net
(2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2)/(2*3*5*7*11)^2≒35個
1から13^2の範囲内には39個の素数があるためほぼ等しい
(2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2-13^(1))*(17^2)/(2*3*5*7*11*13)^2≒55個
1から17^2の範囲内には61個の素数があるためほぼ等しい
270:132人目の素数さん
23/12/25 00:24:30.40 cm14oBhI.net
P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))=(1-1/2)*(1-1/3)*・・・*(1-1/P(m))*P(m+1)^2
1以上∞以下の範囲内の素数の個数は lim [m→∞] P(m+1)^2/ζ(1)=∞になる
P(∞+1)^2のほうがζ(1)よりはるかに大きい
271:132人目の素数さん
23/12/25 00:53:21.12 cm14oBhI.net
11=floor(√(11^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7))))
11=floor(√(30/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7))))
13=floor(√(13^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11))))
13=floor(√(39/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11))))
17=floor(√(17^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13))))
17=floor(√(61/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13))))
P(m+1)=floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))
272:132人目の素数さん
23/12/25 00:57:52.25 cm14oBhI.net
floor(√(19^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17))))
19=floor(√(72/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17))))
floor(√(23^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19))))
23≒24=floor(√(99/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)))) ←ずれるため近似にしかならない
273:132人目の素数さん
23/12/25 01:01:45.24 cm14oBhI.net
floor(√(29^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23))))
29=floor(√(141/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23))))
floor(√(31^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29))))
31≒32=floor(√(162/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29))))
floor(√(37^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31))))
37=floor(√(219/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31))))
274:132人目の素数さん
23/12/25 01:06:01.90 cm14oBhI.net
41≒42=floor(√(263/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37))))
43≒44=floor(√(283/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41))))
47≒48=floor(√(329/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43))))
53≒54=floor(√(409/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47))))
275:132人目の素数さん
23/12/25 01:11:21.77 cm14oBhI.net
59=floor(√(487/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53))))
61≒62=floor(√(519/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53)*(1-1/59))))
67≒68=floor(√(609/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53)*(1-1/59)*(1-1/61))))
276:132人目の素数さん
23/12/25 01:19:26.84 cm14oBhI.net
97=floor(√(1163/(770527199232000/5855632691117327*(1-1/67)*(1-1/71)*(1-1/73)*(1-1/79)*(1-1/83)*(1-1/89))))
floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))が2の倍数の時は1引くことで素数になる
277:132人目の素数さん
23/12/25 01:45:02.00 cm14oBhI.net
1からn番目の素数のみでn+1番目の素数の2乗より小さな素数の個数を求めることができれば
1からn番目の素数のみでn+1番目の素数を表現できる
278:132人目の素数さん
23/12/25 12:25:12.09 cm14oBhI.net
P(m+1)≒floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))
素数定理=√x/ln(x)+E(x)(誤差項=√x*ln(x))
P(m+1)^2より小さい素数の個数≒(1/2)*P(m+1)^2/ln(P(m+1))+2*P(m+1)*ln(P(m+1))
√((1/2)*P(m+1)^2/ln(P(m+1))+2*P(m+1)*ln(P(m+1))*1/Π(1-1/P(k)))
P(m+1)≒floor(P(m+1)*√((1/2)*1/ln(P(m+1))+2*ln(P(m+1))/P(m+1)*1/Π(1-1/P(k))))
√((1/2)*1/ln(P(m+1))+2*ln(P(m+1))/P(m+1)*1/Π(1-1/P(k)))が1に収束する
lim P(m+1)→∞のときln(P(m+1))/P(m+1)=0
1/2*1/ln(P(m+1))*1/Π(1-1/P(k))=1
P(m+1)=e^(1/2*1/Π(1-1/P(k)))=e^(1/2*ζ(1))←m=∞の時の無限大の素数
279:132人目の素数さん
23/12/25 12:37:05.29 cm14oBhI.net
√(((1/2)*1/ln(5))*1/((1-1/2)(1-1/3)))=0.96
√(((1/2)*1/ln(7))*1/((1-1/2)(1-1/3)(1-1/5)))=0.98
√(((1/2)*1/ln(11))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)))=0.95
√(((1/2)*1/ln(13))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)))=0.96
√(((1/2)*1/ln(17))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)))=0.95
√(((1/2)*1/ln(19))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)))=0.96
280:132人目の素数さん
23/12/25 12:40:21.03 cm14oBhI.net
√(((1/2)*1/ln(23))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)(1-1/19)))=0.96
Π(1-1/P(k))=1からn番目の素数積
√(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))≒1
e^(1/2*1/Π(1-1/P(k)))≒P(n+1) ←n+1番目の素数はe^(1/2*1/Π(1-1/P(k)))に近似する
281:132人目の素数さん
23/12/25 18:23:09.30 cm14oBhI.net
√(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))/√(((1/2)*1/ln(P(n))*1/(Π(1-1/P(k)))≒1
P(n+1)≒e^(lnP(n)/(1-1/P(n))と近似できる
P(2)=5≒5.19=e^(ln3/(1-1/3))
P(3)=7≒7.47=e^(ln5/(1-1/5))
P(4)=11≒9.68=e^(ln7/(1-1/7))
P(5)=13≒13.98=e^(ln11/(1-1/11))
282:132人目の素数さん
23/12/25 18:36:33.81 cm14oBhI.net
誤差が大きくなってくるので
P(n+2)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))))やP(n+3)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))*(1-1/P(n+2))))と別々の表記にしたものを平均化して誤差を減らす
P(3)=7=7.66≒(e^(ln5/(1-1/5))+e^(ln3/((1-1/3)(1-1/5))))/2
P(4)=11≒10.3984=(e^(ln7/(1-1/7))+e^(ln5/((1-1/5)(1-1/7)))+e^(ln3/((1-1/3)(1-1/5)(1-1/7))))/3
P(5)=13≒13.11=(e^(ln11/(1-1/11))+e^(ln7/((1-1/7)(1-1/11)))+e^(ln5/((1-1/5)(1-1/7)(1-1/11))))/3 ←およそ3個ほどで平均化すると誤差が減らせるためfloor関数かupper関数で素数にできる
283:132人目の素数さん
23/12/25 23:30:37.87 cm14oBhI.net
√((1/ln(P(m+2)^2)+ln(P(m+2)^2)/P(m+2))*1/Π(1-1/P(k)))≒1
√((1/ln(P(m+1)^2)+ln(P(m+1)^2)/P(m+1))*1/Π(1-1/P(k)))≒1
√(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))=√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n))
√(1/ln(x^2)+ln(x^2)/x)≒√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ←x=n+1番目の素数(x>0を満たす解)
284:132人目の素数さん
23/12/25 23:37:25.00 cm14oBhI.net
P(n)はn番目の素数
√(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))-√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ≒0←n番目の素数とn+1番目の素数を入れるとほぼ0の差になる
√(1/ln(15319^2)+ln(15319^2)/15319)-√(1-1/15313)*√(1/ln(15313^2)+ln(15313^2)/15313)≒0=1.99*10^-6
√(1/ln(90031^2)+ln(90031^2)/90031)-√(1-1/90023)*√(1/ln(90023^2)+ln(90023^2)/90023)≒0=3.041*10^-7
285:132人目の素数さん
23/12/26 00:22:17.81 HXteC7SW.net
ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)だと仮定するとき
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x))
x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)になる仮定に反する
286:132人目の素数さん
23/12/26 00:23:14.84 HXteC7SW.net
ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)だと仮定するとき
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x))
x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)になる仮定に反する
287:132人目の素数さん
23/12/26 12:26:19.68 HXteC7SW.net
>
> e^(i*2pi*(a/2^n+b/3^n+c/5^n+d/7^n+・・・+1/P(n)^n)
> 2,3,5,7・・・P(n)を素因数に持たない数が円周上に均等に分布しているとき
> 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*・・・*(P(n)^n-P(n)^(n-1))*(P(n+1)^2)/(2,3,5,7・・・P(n))^n個とみなせる
>
> a1からanまでに分母の素因数を持たない数を入れるとa1≠2、a2≠3、・・・an≠P(n)
> e^(i*2pi*(a1/2^n+a2/3^n+a3/5^n+a4/7^n+・・・+an/P(n)^n)=e^(i*2pi*(X/(2,3,5,7・・・P(n))^n) Xは1番目からn番目の素数を素因数に持たない
> Xの正確な分布が分かればP(n+1)^2より小さな素数の個数が正確に求まるため誤差がなくなる
288:132人目の素数さん
23/12/27 15:48:50.75 wasfqitI.net
(e^(ln83/(1-1/83))+e^(ln79/((1-1/79)(1-1/83)))+e^(ln73/((1-1/73)(1-1/79)(1-1/83)))+e^(ln71/((1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln67/((1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln61/((1-1/61)(1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83))))/6 =88.22231729709546598≒89
n+1番目の素数は1からn番目の素数で近似できる
P(n+1)=upper[1/n*Σ(e^(lnP(n-k)/Π(1-P(m)) ] (n-k<=m<=n,0<=k<=n-1))
289:132人目の素数さん
23/12/28 12:49:48.69 /6JWP4pU.net
480*12*16*18*(23^2)/(2310*13*17*19)+8=98.47(23^2未満の素数=99個)
480*12*16*18*22*(29^2)/(2310*13*17*19*23)+9=146.57(29^2未満の素数=146個)
480*12*16*18*22*28*(31^2)/(2310*13*17*19*23*29)+10=161.78 (31^2未満の素数=162個)
480*12*16*18*22*28*30*(37^2)/(2310*13*17*19*23*29*31)+11=220.25 (37^2未満の素数=219個)
480*12*16*18*22*28*30*36*(41^2)/(2310*13*17*19*23*29*31*37)+12=262.000021 (41^2未満の素数=263個)
480*12*16*18*22*28*30*36*40*(43^2)/(2310*13*17*19*23*29*31*37*41)+13=281.27 (43^2未満の素数=283個)
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
約 P(m+1)^2*Π(1-1/P(k))+(n-1) 個の素数がある
290:132人目の素数さん
23/12/28 23:54:04.76 /6JWP4pU.net
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
約 P(m+1)^2*Π(1-1/P(k))+m 個の素数がある
1から+∞の間にはlim (m→∞) P(m+1)/ζ(1)+m=e^(ζ(1)/2)/ζ(1)+∞個の素数がある
291:132人目の素数さん
23/12/29 01:04:26.73 voXPt7J2.net
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
素数の分だけ分母の項がかけられる
yに応じて1を上回る時と1を下回る時がある
xが1/2でないと分母の値が無限になるyが存在しない(1を上回る項が趨勢にならない)
292:132人目の素数さん
23/12/29 01:34:53.04 voXPt7J2.net
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)とおけるため
Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
か無限になるときのxが1/2であることになる
293:132人目の素数さん
23/12/29 02:42:24.37 axaYrUXn.net
一応素数の一般項はあるみたいだが……実用性が全く無い
なのですうがくかいでは
294:132人目の素数さん
23/12/29 06:38:25.88 O2hO3W65.net
ゼータの特殊値の規則の方が面白そう
295:132人目の素数さん
23/12/29 16:02:27.62 voXPt7J2.net
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=∞^(1/∞)=1
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))
√(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=1
x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に1に収束しない可能性がある。(1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
296:132人目の素数さん
23/12/29 16:10:09.63 voXPt7J2.net
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))^(1/n)*(n!)^(1/n))=∞←lim[n→∞] (n!)^(1/n)が無限のため
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))
√(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=∞
x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に無限に発散しない可能性がある。(収束してしまう可能性がある) (1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
297:132人目の素数さん
23/12/29 16:22:02.15 voXPt7J2.net
y=0のタイミングですべて1を下回るためゼータ関数のζ(x+i*0)=∞になる(1未満のものが無限個かかって分母が0になるため)
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/0=∞
1+1/2^2x-2×cos(y×ln2)/2^x < 1
1+1/3^2x-2×cos(y×ln3)/3^x < 1
逆にすべての項目が1以上になれば0に収束する(実際はそんなyが存在するのがx=1/2のときだけ)
(1より大きい項目がたくさん出るタイミングがx=1/2以外では出てこない)
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/∞=0
1+1/2^2x-2×cos(y×ln2)/2^x > 1
1+1/3^2x-2×cos(y×ln3)/3^x > 1
1+1/5^2x-2×cos(y×ln5)/5^x > 1
298:132人目の素数さん
23/12/29 21:13:50.10 voXPt7J2.net
cos(2pi*(1/2+2/3+3/5))=cos(2pi*(7/(2*3*5)))
cos(2pi*(1/2+2/3+1/5))=cos(2pi*(11/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(13/(2*3*5)))=cos(2pi*((2*3*5-13)/(2*3*5)))=cos(2pi*(17/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(17/(2*3*5)))
cos(2pi*(1/2+2/3+1/5))=cos(2pi*(19/(2*3*5)))=cos(2pi*((2*3*5*7-19)/(2*3*5)))=cos(2pi*(41/(2*3*5)))
cos(2pi*(1/2+2/3+3/5))=cos(2pi*(23/(2*3*5)))
cos(2pi*(1/2+2/3+4/5))=cos(2pi*(29/(2*3*5)))
cos(2pi*(1/2+2/3+4/5))=cos(2pi*(31/(2*3*5)))
cos(2pi*(1/2+2/3+3/5))=cos(2pi*(37/(2*3*5)))
cos(2pi*(1/2+2/3+1/5))=cos(2pi*(41/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(43/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(47/(2*3*5)))
cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←11*17以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←11*17以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←11*17以上、17^2未満なので素数
cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←11*17以上、17^2未満なので素数
cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17
cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←11^2以上、11^*17未満なので素数
299:132人目の素数さん
23/12/29 21:22:54.77 voXPt7J2.net
cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17
cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←13^2以上、11*17未満なので素数
cos(2pi*(1/2+2/3+2/5+2/7))=cos(2pi*(31/(2*3*5*7)))=cos(2pi*((2*3*5*7-31)/(2*3*5*7)))=cos(2pi*(179/(2*3*5*7))) ←13^2以上、11*17未満なので素数
cos(2pi*(1/2+2/3+4/5+6/7))=cos(2pi*(37/(2*3*5*7)))=cos(2pi*((2*3*5*7-37)/(2*3*5*7)))=cos(2pi*(173/(2*3*5*7))) ←13^2以上、11*17未満なので素数
cos(2pi*(1/2+2/3+3/5+3/7))=cos(2pi*(41/(2*3*5*7)))=cos(2pi*((2*3*5*7-41)/(2*3*5*7)))=cos(2pi*(169/(2*3*5*7))) ←13^2
cos(2pi*(1/2+2/3+1/5+3/7))=cos(2pi*(43/(2*3*5*7)))=cos(2pi*((2*3*5*7-43)/(2*3*5*7)))=cos(2pi*(167/(2*3*5*7))) ←11*13以上、13^2未満なので素数
300:132人目の素数さん
23/12/30 11:19:50.17 jsoLHdB8.net
ζ(s)=Σ1/n^s
(1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s
ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s
ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46
301:132人目の素数さん
23/12/30 11:37:17.40 jsoLHdB8.net
ζ(s)=1/(1-2^(2/3))*Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ1/n^(1/3)=1+1/2^(1/3)+1/3^(1/3)-1/4^(1/3)+・・・
1/2^(1/3)*Σ1/n^(1/3)=1/2^(1/3)+1/4^(1/3)+6^(1/3)+・・・
Σ1/n^(1/3)-2*1/2^(1/3)*Σ1/n^(1/3)=Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ(-1)^(n+1)/n^(1/3)=(1-2^(2/3))*Σ1/n^(1/3)
(1-2^(2/3))*Σ1/n^(1/3)=Σ(n=1〜∞) (-1)^(n+1)/(n^(1/3))≒0.572
ζ(1/3)=0.572/(1-2^(2/3))≒-0.97
ζ(1/3)=1/(1-2^(2/3))*(1-2^(2/3))*Σ1/n^(1/3)≒-0.97
302:132人目の素数さん
23/12/30 12:07:17.28 jsoLHdB8.net
ζ(1/2+i*y)=Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0
ζ(1/2+i*y)=1/(1-1/2^(-1/2+i*y))*Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 ←Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0
Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0でもあり、Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0もある
1/1^s+1/2^s+1/3^s+1/4^s+・・・・=0
1/1^s-1/2^s+1/3^s-1/4^s+・・・・=0
1/1^s+1/3^s+1/5^s+1/7^s+・・・・=0
1/2^s+1/4^s+・・・・=0
Σ1/(2n)^(1/2+i*y)=0
Σ1/(2n+1)^(1/2+i*y)=0
303:132人目の素数さん
23/12/30 20:00:06.26 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/42
304:132人目の素数さん
23/12/30 20:14:12.74 jsoLHdB8.net
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
+1/42
=-1.436535803101403675249612014725209082488526639894421611110168217≒-1.46=ζ(1/2=
-1.464072106873427134267436827982618352404737194303297963507762570
0.0037267799624996494940152894478854603924010305993525428737848287
-9.316949906249123735038223619713650981002576498381357184462... × 10^-6
1.3975424859373685602557335429570476471503864747572035776693... × 10^-7
+1/42
305:132人目の素数さん
23/12/30 20:35:30.01 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
+1/42
=-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2)
-1.464072106873427134267436827982618352404737194303297963507762570
0.0037267799624996494940152894478854603924010305993525428737848287
-9.316949906249123735038223619713650981002576498381357184462... × 10^-6
1.3975424859373685602557335429570476471503864747572035776693... × 10^-7
306:132人目の素数さん
23/12/30 20:36:01.86 jsoLHdB8.net
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
=-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2)
307:132人目の素数さん
23/12/30 21:16:29.25 jsoLHdB8.net
ζ(x+i*y')-ζ(x+i*y)=1-1+1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2))
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1+(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/4^(x/2+i*y'/2)-1/4^(x/2+i*y/2)=1/2^(x+i*y')-1/2^(x+i*y)=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
1/2^(x/2+i*y/2+i*π/2)=-1/2^(x/2+i*y/2)
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))*(1+(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2))))
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)+1/2^(x/4+i*y/4+i*π/4))
1/2^(x/4+i*y/4+i*π/4+i*π/2)=-1/2^(x/4+i*y/4+i*π/4)
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4+i*π/2))
=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/8+i*y'/8)-1/2^(x/8+i*y/8+i*π/8+i*π/8))**(1/2^(x/8+i*y'/8)+1/2^(x/8+i*y/8+i*π/8+i*π/8))
無限に分解していく際にx=1/2でないと都合が悪い可能性がある(1/2^nで実部を表せない)
308:132人目の素数さん
23/12/30 22:03:36.06 jsoLHdB8.net
1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y)
ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する
ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0
lim[n→∞]Σ[k=1→n]i*π/ln2^k=i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2=i*π*∞ mod 2π
nの値が無限でないときlim[n→m]Σ[k=1→n]i*π/ln2^kのときΣ[k=1→n]i*π/ln2^kはmod 2πされるため0から2πの値をとる
A=2^’x/2^m)*e^(i*y') B=2^(x/2^m)*e^(i*y+lim[n→m]Σ[k=1→n]i*π/ln2^k)
AとBの角度差がlim[n→m]Σ[k=1→n]i*π/ln2^kと可変する
長さが半分になり続ける2本のベクトルの間のベクトルの積とみなせるため
初期値が1/2でないと0に収束しない可能性がある
(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2))
*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
309:132人目の素数さん
23/12/30 22:26:56.47 jsoLHdB8.net
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2)
*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
2ベクトルの角度差がy'-y+lim[n→m]Σ[k=a→n]i*π/ln2^k)と可変する
長さは1/2^(x/2^m)になる
初期値が1/2でないと0に収束しない可能性がある
310:132人目の素数さん
23/12/31 13:06:56.21 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
311:132人目の素数さん
23/12/31 13:32:01.36 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) ←0に収束する必要がある
Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) ←0に収束する必要がある
Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ←0に収束する必要がある
2^a*1/2^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
2^a*1/3^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
2^a*1/4^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2)
312:132人目の素数さん
23/12/31 14:52:49.83 ZQRjm/0R.net
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))*lnP(n)/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) ←0に収束する必要がある
Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) ←0に収束する必要がある
Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ←0に収束する必要がある
|ζ(x+i*y')-ζ(x+i*y)|=lim ΣΠ2^a*1/P(l)^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(l)^k))*lnP(l)/2)=0
これが収束するときにx=1/2しかない可能性がある
313:132人目の素数さん
23/12/31 17:11:21.67 ZQRjm/0R.net
|ζ(x+i*y')-ζ(x+i*y)|=1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/2^(x+i*y')-1/2^(x+i*y)=2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))
1/3^(x+i*y')-1/3^(x+i*y)=2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))
1/4^(x+i*y')-1/4^(x+i*y)=2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2))
5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
ζ(x+i*y')-ζ(x+i*y)≒2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))+2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))+2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
がx≠1/2のときy,y'をもたない(y≠y'>0)
314:132人目の素数さん
23/12/31 17:28:27.05 ZQRjm/0R.net
(1/2^(1/2+i*5π/(7*ln2))-1/2^(1/2+i*π/(7*ln2)))=(2*1/2^(1/2)*sin((4π/(7*ln2))*ln2/2))*e^(i*tan^(-1)((sin(π/7)/sqrt(2) - cos((3 π)/14)/sqrt(2))/(-sin((3 π)/14)/sqrt(2) - cos(π/7)/sqrt(2))) - i*π)
315:132人目の素数さん
23/12/31 21:13:13.10 ZQRjm/0R.net
(1/p(n)^(x+i*y')-1/p(n)^(x+i*y))=(2*1/p(n)^(x)*sin((y'-y)*lnp(n)/2)*e^(i*(arctan((-sin(y'*logp(n))+sin(ylogp(n)))/(cos(y'logp(n))-cos(ylogp(n))))+π)))
(1/2^(x+i*y')-1/2^(x+i*y))=(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
(1/3^(x+i*y')-1/3^(x+i*y))=(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
(1/4^(x+i*y')-1/4^(x+i*y))=(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
がx≠1/2のときy,y'をもたない(y≠y'>0)
316:132人目の素数さん
23/12/31 21:27:12.79 ZQRjm/0R.net
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないとの仮定が正しいとき(y'≠y>0)
ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))をA*e^(i*B)にかえて
AがX≠1/2のとき0にならないことを証明すれば実部が1/2のみであることになる
317:132人目の素数さん
23/12/31 22:15:02.20 ZQRjm/0R.net
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・
((4/3)*cos((n-1)*2π/3)-1/3)=1,1,-2,1,1,-2,1,1,・・・
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s
ζ(s)=1/(1-1/3^(s-1))*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s
ζ(1/2)=1/(1-√3)*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s=-1.46=1/(1-√2)*Σ(-1)^(n-1)/n^s
318:132人目の素数さん
23/12/31 22:24:09.99 ZQRjm/0R.net
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・
-2*cos((n)*2π/3))=1,1,-2,1,1,-2,1,1,・・・
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ(-2*cos((n)*2π/3))/n^s
ζ(s)=1/(1-1/3^(s-1))*Σ(-2*cos((n)*2π/3))/n^s
ζ(1/2)=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n
319:132人目の素数さん
23/12/31 22:40:13.18 ZQRjm/0R.net
(1-1/4^(s-1))ζ(s)=Σ1/n^(s)-4*Σ1/(4n)^s=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・
((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1,・・・
ζ(s)=1/(1-1/4^(s-1))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/n^s
ζ(1/2)=1/(1-√4)*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n
320:132人目の素数さん
23/12/31 22:59:36.79 ZQRjm/0R.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x-2*e^(i*-y*ln(n))/3^x+e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-3*e^(i*-y*ln(n))/4^x+・・・)
1/(1-1/2^(x-1+i*y))←この項目を無視して
(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)だけ0になればいい
1,1,1,1,-5,1,1,1,1,-5,1,1,1,1,-5でも0
1,1,1,1,1,-6,1,1,1,1,1,-6,でも0
1がn回連続して-(n+1)が1回出る関数をf(X)にする
Σf(X)*1/n^x*e^(i*-yln(n))=0になるときx=1/2のみになればいい
321:132人目の素数さん
24/01/01 00:52:54.27 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-3/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2*1/3^s+3/4^s+1/5^s-2*1/6^s+1/7^s+3/8^s-2*1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m)=1がm-1回連続し、-mが1回でる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ
322:132人目の素数さん
24/01/01 01:14:02.39 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ]
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
Σ1/(2n-1)^s-Σ1/(2n)^s=0
(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0になるため
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
(1/1^s+1/2^s+1/3^s+・・・+1/(m-1)^s-(m-1)/(m)^s+1/(m+1)^s+・・・+1/(2m-1)^s-(m-1)/(2m)^s+・・・)=0になるため
Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s-(m-1)*Σ1/(mn)^s=0
Σ1/(mn)^s=1/(m-1)*(Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s)=0 ←s=1/2+i*yのときのみ成り立つことを証明すればいいため
Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s=A*e^(i*B)としてx≠1/2のときA≠0を示せばいい
323:132人目の素数さん
24/01/01 02:30:35.12 7BKpZ/zg.net
Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s
↓に代入すると
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s)
x=1/2のときのみ成り立つことを示す
324:132人目の素数さん
24/01/01 11:26:45.50 7BKpZ/zg.net
ζ(-1+i*0)=1+1/2^(-1+i*0)+1/3^(-1+i*0)+1/4^(-1+i*0)+5^(1-(1/2+i*0))/(-1+i*0-1)+5^(-(-1+i*0))/2 ←0
+1/6*1/2!*5^(1-(-1+i*0)-2)*(-1+i*0) ←-1/12
-1/30*1/4!*5^(1-(-1+i*0)-4)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2) ←0
+1/42*1/6!*5^(1-(-1+i*0)-6)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2)*(-1+i*0+3)*(-1+i*0+4) ←0
+1/R2k
ζ(-1+i*0)=Σn=1+2+3+4+5+・・・=-1/12
325:132人目の素数さん
24/01/01 12:05:19.67 7BKpZ/zg.net
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす
326:132人目の素数さん
24/01/01 14:57:41.26 7BKpZ/zg.net
Σ1/(n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(n)^s
Σ1/(2n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(2n)^s
Σ1/(2n-1)^s =1/(1-1/(2)^(s-1))*(Σ(-1)^(n-1)/(n)^s-Σ(-1)^(n-1)/(2n)^s)
Σ1/(2n-1)^s =(1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(2n)^(s)))
Σ1/(2n-1)^s =1+1/√3+1/√5+1/√7+・・・≒-0.42
327:132人目の素数さん
24/01/01 15:15:03.85 7BKpZ/zg.net
(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)
=Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する
328:132人目の素数さん
24/01/01 15:29:41.02 7BKpZ/zg.net
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(n)^s-Σ1/(3n)^s=Σ1/(3n-2)^s+Σ1/(3n-1)^s
Σ(n=1〜∞) 1/(3n-2)^(s)+Σ(n=1〜∞) 1/(3n-1)^(s)=1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))
1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 ←s=1/2+i*yのときのみ満たす
329:132人目の素数さん
24/01/01 15:34:52.20 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 3*(Σ(n=1〜∞) (-1)^(n-1)/(3n)^(1/2+i*14.1347))=6.82869×10^-6 - 0.000128656 i ←ほぼ0になる
330:132人目の素数さん
24/01/01 15:40:54.11 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*y)) - m*(Σ(n=1〜∞) (-1)^(n-1)/(mn)^(1/2+i*y)) ←1/2+i*yがゼロ点のときmに整数を入れるとほぼ0になる
1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s) ←1/(1-1/2^(s-1))は値を補正する項なもののゼロ点の時無視できるため
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 4*(Σ(n=1〜∞) (-1)^(n-1)/(4n)^(1/2+i*14.1347))=0.0000654354 + 0.0000182958 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 5*(Σ(n=1〜∞) (-1)^(n-1)/(5n)^(1/2+i*14.1347))=-0.0000801562 - 0.000119567 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 125*(Σ(n=1〜∞) (-1)^(n-1)/(125n)^(1/2+i*14.1347))=-0.000385263 + 0.000318602 i
331:132人目の素数さん
24/01/01 20:57:48.03 7BKpZ/zg.net
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347251417346937904572519835624702707842)) - 10000*(Σ(n=1〜∞) (-1)^(n-1)/(10000n)^(1/2+i*14.1347251417346937904572519835624702707842))
=-0.×10^-38 + 0.×10^-38 i ←ゼロ点の精度が上がるほど0に近づく
332:132人目の素数さん
24/01/01 22:23:45.62 7BKpZ/zg.net
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^s)=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^s)=1/(1-1/3^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s)=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^s))=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^s))=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s))=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)((F(m-1))*1/n^s))=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)=0
m-1の値ごとに分子の数が異なるものの、ゼロ点のときすべて0に収束する
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)((F(m-1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)
333:132人目の素数さん
24/01/01 22:43:59.96 7BKpZ/zg.net
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))==(Σ(n=1〜∞)1/(2n-1)^s)-(Σ(n=1〜∞)1/(2n)^s)
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
=(Σ(n=1〜∞)1/(n)^s)-2*(Σ(n=1〜∞)1/(2n)^s)=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-2*(Σ(n=1〜∞)(-1)^(n-1)/(2n)^s))
334:132人目の素数さん
24/01/01 23:02:03.66 7BKpZ/zg.net
mに任意の整数を入れ、sがゼロ点の時
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-m*(Σ(n=1〜∞)(-1)^(n-1)/(mn)^s)=0になる←(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)を正規化
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/s)*n)^s)
m^(1-1/s)*nのmとn(次数1)の次数が等しくなるためにはs=1/2+i*yである必要がある
(1-1/(1/2+i*y))=(2 y + i)/(2 y - i) ←|(2 y + i)/(2 y - i)|=1のため次数1
335:132人目の素数さん
24/01/01 23:53:19.63 7BKpZ/zg.net
zetazero(k)=k番目の非自明なゼロ点
m、kにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(k))-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/zetazero(k))*n)^zetazero(k))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(1))-(Σ(n=1〜∞)(-1)^(n-1)/(2^(1-1/zetazero(1))*n)^zetazero(1))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(2))-(Σ(n=1〜∞)(-1)^(n-1)/(31^(1-1/zetazero(2))*n)^zetazero(2))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(12))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/zetazero(12))*n)^zetazero(12))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^(1/10+zetazero(12)))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/(1/10+zetazero(12)))*n)^(1/10+zetazero(12)))≒-4.49761 + 2.32023 i ←1/2からずれるとゼロ点にならない
336:132人目の素数さん
24/01/02 00:33:09.00 xRdffKCJ.net
x+i*y=非自明なゼロ点
mにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))=0
Σ(n=1〜∞)(-1)^(n-1)/(m^((s-1)/(s))*1)^(s)=1/(m^((s-1)/(s))*1)^(s)-1/(m^((s-1)/(s))*2)^(s)+1/(m^((s-1)/(s))*3)^(s)-1/(m^((s-1)/(s))*4)^(s)+・・・
m^((s-1)/(s))=e^(ln(m)*(s-1)/(s)) ←|(s-1)/(s)|がx≠1/2のときyにより変動してしまうx=1/2のときy≠i/2を除き1で一定する
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))の分母の長さが変動してしまうため0に収束しなくなる
337:132人目の素数さん
24/01/02 00:36:21.02 xRdffKCJ.net
Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+・・・←x≠1/2のときyが変動することでxに影響を与える可能性がある(分母の大きさが変動する可能性がある)
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
139日前に更新/368 KB
担当:undef