IUTを読むための用語 ..
[2ch|▼Menu]
232:132人目の素数さん
22/04/03 08:50:48.28 28NcParQ.net
メモ
URLリンク(www.orecoli.com)
俺の Colimit を越えてゆけ
19 2016-01
圏論に最短で入門する
はじめに
対象読者
数学以前
数学の基礎
ホモロジー代数
圏論
もっと手取り早く圏論の勉強を始めたい人へ
おわりに
紹介した書籍
私が圏論という分野を知るきっかけは、おそらくこの文章を読んでいるほとんどの人と同様に Haskell の勉強をしたことがきっかけでした。
Haskell のモナドなどを利用する上では圏論を理解する必要は全くないのですが、型システムや処理系に関して詳しく知りたくて論文を読むと圏論の言葉が普通に使われていて、理解できずに断念していました。
そこで、当時数人が集まってやっていた圏論勉強会に参加して圏論の勉強を始めました。当時読んでいた書籍は Conceptual Mathematics: A First Introduction to Categories でした。この本は圏論の初学者向けに書かれた本で、数学的な知識をほとんど仮定せずに理解できるように書かれている非常によい本です。一方で全く数学の素養がない状態で読むと、証明もちゃんと追えているのかあやふやでなんとなく分かった気にさせられる本でもあります。私がまさにそのような状態でした。
しかし、ずっと圏論をちゃんと理解できるようになりたいと思っていたので、大学の数学科に進んだ学部1,2年生が学ぶような数学から勉強を始めました。圏論は比較的最近、1940年代に登場した理論で、数学の中でも非常に抽象的な理論なので数学を勉強しはじめてもすぐには出てきません。私は独学で勉強していたので数学の世界で右往左往することになったのですが、とりあえず現状で私が考える、圏論に至るための最短の道を紹介します。この順で勉強すれば、圏論の書籍を読む頃には、圏論が提供する抽象化を「あ?あのことを言っているのか」と思いながら読めるようになると思います。
計算機科学の世界で生きてきたのにうっかり圏論と出会ってしまって、「今更また一から数学の勉強をしないといけないのか?」と絶望に打ちひしがれている、昔の私のような人の一助になれば幸いです。

233:132人目の素数さん
22/04/03 08:51:20.41 28NcParQ.net
>>232
メモ
URLリンク(www.orecoli.com)
俺の Colimit を越えてゆけ
27 2016-02
圏論に最短で入門する
はじめに
前回の記事では、圏論を学習する上では数学の基礎から学習する必要があると述べました。
 一方で、そんなに時間をかけていられない、かけられないといった理由から数学の素養が十分に身についていない状態で Category Theory (Oxford Logic Guides) を読み始めたいという人もいるでしょう。そのような人向けにこの本の副読本のような内容の記事を書いていこうと思います。
  この本は十分にわかりやすい本なので解説の部分で内容を追加するようなことはしません。書籍の中で証明はされているけれども十分に明らかとは言えない箇所や、残りは読者に任せるとして省略されている箇所を中心に証明を追加していこうと思います。特に Chapter 1 では数学書を読む場合に自分で手を動かして補いながら読まないといけない箇所がどういう箇所なのか初学者にもわかるように書いていこうと思います。
 この記事が、これから独学で圏論を勉強しようとしている人や、勉強会でこの本を読もうとしている人の役に立てば嬉しいです。
 私が読んでいるのは英語の第2版ですがいくつか誤植があるので下に書いておきます。著者には報告済みなので第3版が出れば修正されるでしょう。
目次
Chapter 1: Categories
Chapter 2: Abstract structures
Chapter 3: Duality
Chapter 4: Groups and categories
Chapter 5: Limits and colimits
Chapter 6: Exponentials
Chapter 7: Naturality
Chapter 8: Categories of diagrams
Chapter 9: Adjoints
Chapter 10: Monads and algebras

234:132人目の素数さん
22/04/03 14:49:57.07 .net
下げマス もう諦めろって
 Z^(1)∩(Q/Z)={e}
ってこともわからん貴様に圏論なんか無理
位相空間すら全く理解できなかったんだろ?w

235:132人目の素数さん
22/04/05 20:34:01.65 JQiM9kkd.net
sage

236:132人目の素数さん
22/04/21 17:41:38 5uDCQIOe.net
メモ
URLリンク(www.math.okayama-u.ac.jp)
Math. J. Okayama Univ. 52 (2010), 1?28
ARITHMETIC ELLIPTIC CURVES IN GENERAL POSITION Shinichi MOCHIZUKI

Abstract. We combine various well-known techniques from the theory
of heights, the theory of “noncritical Belyi maps”, and classical analytic
number theory to conclude that the “ABC Conjecture”, or, equivalently,
the so-called “Effective Mordell Conjecture”, holds for arbitrary rational
points of the projective line minus three points if and only if it holds for
rational points which are in “sufficiently general position” in the sense
that the following properties are satisfied: (a) the rational point under
consideration is bounded away from the three points at infinity at a
given finite set of primes; (b) the Galois action on the l-power torsion
points of the corresponding elliptic curve determines a surjection onto
GL2(Zl), for some prime number l which is roughly of the order of
the sum of the height of the elliptic curve and the logarithm of the
discriminant of the minimal field of definition of the elliptic curve, but
does not divide the conductor of the elliptic curve, the rational primes
that are absolutely ramified in the minimal field of definition of the
elliptic curve, or the local heights [i.e., the orders of the q-parameter at
primes of [bad] multiplicative reduction] of the elliptic curve.

Introduction
In the classical intersection theory of subvarieties, or cycles, on algebraic
varieties, various versions of the “moving lemma” allow one to replace a
given cycle by another cycle which is equivalent, from the point of view
of intersection theory, to the given cycle, but is supported on subvarieties
which are in a “more convenient” position ? i.e., typically, a “more general”
position, which is free of inessential, exceptional pathologies ? within the
ambient variety.

237:132人目の素数さん
22/04/29 06:37:49.57 b8gsErp4.net
<q-parameter についてメモ>
URLリンク(ivanfesenko.org)
ARITHMETIC DEFORMATION THEORY VIA
ARITHMETIC FUNDAMENTAL GROUPS AND NONARCHIMEDEAN THETA-FUNCTIONS,
NOTES ON THE WORK OF SHINICHI MOCHIZUKI
IVAN FESENKO
This text was published in Europ. J. Math. (2015) 1:405?440.
P9
If v is a bad reduction
valuation and Fv is the completion of F with respect to v, then the Tate curve F×
v /hqvi, where qv is the q-parameter of EF at v and hqvi is the cyclic group generated by qv, is isomorphic to EF(Fv), hqvi → the origin of
EF, see Ch.V of [44] and §5 Ch.II of [43].
P10
Define an idele qEF ∈ lim -→ A×k: its components at archimedean and good reduction valuations are taken to
be 1. Its components at places where EF has split multiplicative reduction are taken to be qv, where qv is the
q-parameter of the Tate elliptic curve EF(Fv) = F×v /hqvi.
The ultimate goal of the theory is to give a suitable bound from above on deg(qEF).
Fix a prime integer l > 3 which is relatively prime to the bad reduction valuations of EF, as well as to the
value nv of the local surjective discrete valuation of the q-parameter qv for each bad reduction valuation v.
P13
Let q ∈ L be a non-zero element of the maximal ideal of the ring of integers of L (this q will eventually be
taken to be the q-parameter qv of the Tate curve EF(Fv) ' F×v /hqvi, where L = Fv, for bad reduction primes v of
E, see Ch.5 of [44]).
つづく

238:132人目の素数さん
22/04/29 06:38:29.57 b8gsErp4.net
>>237
つづき
Just as in the classical complex theory, elliptic functions on L with period q can be expressed in terms of θ, a
property which highlights the central role of nonarchimedean theta-functions in the theory of functions on the
Tate curve. For more information see §2 Ch.I and §5 Ch.II of [43] and p. 306-307 of [38].
・・
via the change of variables q = exp(2πiτ),u = exp(2πiz)
P24
54 In IUT, the two combinatorial dimensions of a ring, which are often related to two ring-theoretic dimensions (one of which is
geometric, the other arithmetic), play a central role. These two dimensions are reminiscent of the two parameters (one of which is
related to electricity, the other to magnetism) which are employed in a subtle fashion in the study of graphene to establish a certain
important synchronisation for hexagonal lattices.
(引用終り)
以上

239:132人目の素数さん
22/04/29 06:40:42.26 b8gsErp4.net
>>237
q-parameter についてメモ 追加
Inter-universal geometry と ABC予想 (応援スレ) 65
スレリンク(math板:490番)-494

240:132人目の素数さん
22/04/29 10:40:50.66 b8gsErp4.net
メモ
(最新版)
URLリンク(www.kurims.kyoto-u.ac.jp)
ON THE ESSENTIAL LOGICAL STRUCTURE OF
INTER-UNIVERSAL TEICHMULLER THEORY IN TERMS ¨
OF LOGICAL AND “∧”/LOGICAL OR “∨” RELATIONS:
REPORT ON THE OCCASION OF THE
PUBLICATION OF THE FOUR MAIN PAPERS ON
INTER-UNIVERSAL TEICHMULLER THEORY ¨
Shinichi Mochizuki
April 2022 P140版
(元)
URLリンク(www.kurims.kyoto-u.ac.jp)(marked%20up%20version).pdf
ON THE ESSENTIAL LOGICAL
STRUCTURE OF INTER-UNIVERSAL
TEICHMULLER THEORY I, II, III, IV, V ¨
Shinichi Mochizuki (RIMS, Kyoto University)
September 2021 P42版

241:132人目の素数さん
22/05/01 02:53:34.98 6LpCNPT7.net
無様ここに極まれり

242:132人目の素数さん
22/05/01 08:16:10.72 txhCGf0/.net
これいいね
Inter-universal geometry とABC 予想49
スレリンク(math板:130番)
130 名前:132人目の素数さん[] 投稿日:2022/04/30(土) 23:59:11.91 ID:7Sq4MRJH
>>126
圏ではなく、無限大の極限で収束させるため「圏/(圏と同値)」を使う。
目的は、属性方程式の解を一種の解析・極限で得るため。、
(§1.3 圏のIU 幾何の定理)
通常の集合論では有り得ず、集合論を拡大しているのは「基礎の公理」。
(§1.1Motivation)
集合論を拡大する目的が何で、どう拡大したかったか、
以下のリンク先で、2008年のIU幾何の構想メモに記載されていた。
URLリンク(www.kurims.kyoto-u.ac.jp)(Hokudai%202003-11).pdf

243:132人目の素数さん
22/05/02 13:52:43 Ofo/5NQz.net
それのどこの何がどうしてどの様にいいんだかくらい書いてからいいねと書けよ

244:132人目の素数さん
22/05/17 00:13:14.98 bVPB1PYg.net
sage

245:132人目の素数さん
22/05/31 10:10:06.92 WgynKOen.net
メモ
URLリンク(www.youtube.com)
高校生にもわかる宇宙際タイヒミュラー理論1
17,702 回視聴 2018/01/18 宇宙際タイヒミュラー理論についてざっくり説明してみました。
1:25 フェルマー予想の証明を導くのは正しくは「強いABC予想」でした。(現時点でこちらはまだ証明されていません)
数学探検Channel
愚野骨頂
2 年前
これは望月先生の論文にかなり踏み込んだお話で面白い。ついにホッジ舞台のや情報のカプセルの話も入ってい本格的で助かります。

246:132人目の素数さん
22/05/31 13:53:19.88 WgynKOen.net
メモ
URLリンク(www4.math.sci.osaka-u.ac.jp)
1999年度北大集中講義レクチャーノート
ガロア・タイヒミュラー群の LEGO理論
中村 博昭
北海道大学 2000
はしがき
このノートは、1999 年 略 に北海道大学で集中講義した内容に若干加筆
してまとめたものである。この講義の主なねらいは、代数曲線のモジュライ空間の基本群
(タイヒミュラーモジュラー群) たちが、リーマン面の退化を通じて、多重な仕方で積み重
なっている様子を、有理数体の絶対ガロア群の表現の言葉で記述することであった。特に、
代数曲線のモジュライ空間に関係する種々の副有限基本群におけるガロア表現が、その最
も基本的な場合である射影直線マイナス3点の場合をうまく組み合わせることで具体的に
記述できる、ということを説明した。この一環としてタイヒミュラー幾何学のような位相
幾何と代数幾何が交錯する世界の一面を、ガロア理論を通じて群論的な平易な言葉で描写
することを試みた

247:132人目の素数さん
22/06/01 07:17:01.74 AbZqwpel.net
>>245 追加
URLリンク(www.youtube.com)
高校生にもわかる宇宙際タイヒミュラー理論2
4,612 回視聴 2018/01/18 宇宙際タイヒミュラー理論についてざっくり説明してみました。
数学探検Channel

248:132人目の素数さん
22/06/07 10:11:22.82 k4enzP+j.net
メモ
URLリンク(www1.econ.hit-u.ac.jp)
Tomoki Kawahira / Graduate School of Economics / Hitotsubashi University
URLリンク(www1.econ.hit-u.ac.jp)
複素解析特論I
タイヒミュラー空間と複素力学系への応用
川平 友規
平成 23 年 6 月 14 日
講義の概要(コースデザインより). タイヒミュラー空間論はリーマン面(1 次元複素多様体)の変形空間の理
論である.変形空間は抽象的に定義された「集合」だが,数学者はこれを幾何学的な議論が可能な「空間」と
みなす.この講義の目的は,大雑把に言って
? リーマン面の変形空間に幾何構造を与えるまでの(思考)過程を解説すること; そして
? (残った時間で)変形空間の幾何学的性質を複素力学系の理論に応用すること
である.
講義予定. 扱うトピックは以下のとおり:
? リーマン面の基礎(基本群,普遍被覆,一意化定理,フックス群)
? リーマン面上の微分・積分(ベルトラミ微分,正則 2 次微分,リーマン・ロッホの定理)
? 擬等角写像論・幾何学的関数論の概説
? 有限型リーマン面の変形空間(モジュライ空間とタイヒミュラー空間,ベアス埋め込み)
? 1 次元複素軌道体 (orbifold) の一意化と分類
? 球面上の分岐被覆力学系の剛性理論(文献 [4, 5])
最後のトピックは,「球面の自己分岐被覆による力学系」の,有理関数による実現可能性と剛性に関する理論で
ある.80 年代にサーストンが確立したものだが,近年またじわじわと脚光を浴びている.
P3
等角性について. 等角 (conformal) な同相写像とは,定義域上で正則(すなわち複素微分可能)で
あり,かつ微分の値が 0 にならない同相写像である.2
2「等角」という語をあえて使うのは,微分が 0 にならないことを強調するためである.同相写像に限って言えば,等角
性,正則性,双正則性(逆写像も正則)はいずれも互いにシノニムである.したがって,「等角な同相写像」は「正則な同相写
像」とも「双正則写像 (biholomorhic map)」ともよばれる.

249:132人目の素数さん
22/06/07 10:11:54.66 k4enzP+j.net
>>248
追加
URLリンク(www.th.phys.titech.ac.jp)
武藤研究室 東京工大
物理数学第一
平成18年度 学部 3学期
第6章  等角写像 127 KB 58 KB
URLリンク(www.th.phys.titech.ac.jp)
第 6 章 等角写像
複素写像変換
導関数が 0 になる点を 臨界点 という。
定理 6.3 等角写像の原理

250:132人目の素数さん
22/06/07 13:26:57 Y0RvZ70I.net
>>248
中卒ニホンザル 他人の目を盗んで
微分が0にならない、検索しまくりwww
ヤコビアンも逆関数定理も分からん奴には
一生無縁だってwwwwwww

251:132人目の素数さん
22/06/10 16:10:41.88 0Da5gZei.net
>>248
追加
これいいね
URLリンク(www1.econ.hit-u.ac.jp)
Tomoki Kawahira / Graduate School of Economics / Hitotsubashi University
URLリンク(www1.econ.hit-u.ac.jp)
複素解析特論I(つづき)
タイヒミュラー空間と複素力学系への応用
川平 友規
平成 24 年 9 月 21 日
7 リーマン面の基本群・普遍被覆面
今回と次回で,「リーマン面の一意化定理」を証明する.
一口に「リーマン面」といっても,さまざまな構成方法がある.いわゆる格子トーラス T(ω1, ω2)
のようなものはかなり具体的に構成されたリーマン面の部類に入るほうで,たとえば「ガウスの定
理」でみたような例は,曲面に複素構造を与える時点で「ベルトラミ方程式を解く」といういささか
超越的(?)なプロセスを経る分,素性がよくわからない.こうした抽象性を緩和するために,与え
られたリーマン面と「同等な」モデル(模型)を作るのが「一意化定理」(uniformization theorem)
の役割だといってよい.大まかにその主張を述べておきたいので,まずふたつのリーマン面が「同
等」であることを定義する:
つづく

252:132人目の素数さん
22/06/10 16:11:05.08 0Da5gZei.net
>>251
つづき
定義(等角同型). ふたつのリーマン面 S と R が等角同型 (conformally isomorphic) または単に
同型 (isomorphic) であるとは,ある正則(等角)な同相写像 h : S → R が存在するときをいう.
定理 7.1 (一意化定理) 任意のリーマン面は,次のような形のリーマン面 R と等角同
型である:
R = X/Γ
ただし X = C?, C, もしくは D であり,Γ は P SL(2, C) のある離散部分群.
まだ P SL(2, C) が X がどのように作用するのかが説明されていないので,現時点ではかなりあいま
い主張であるが,この X/Γ がモデルに相当するリーマン面である.とりあえず,「任意のリーマン面
は,ごくごく簡単なリーマン面を,P SL(2, C) という比較的素性のよくわかっている群の部分群で
割ったものと同等だ」という部分に意味がある.1 以下ではその構成方法を概観するが,その手順は
はあたかも,地球から地球儀を構成するかのようである.地表をくまなく歩いて地図帳を作り,それ
を使い慣れた材質に写し取りながら模型を構成していく.
まずは準備段階として,定理の証明に必要な「基本群と被覆空間」の用語を復習しつつ,リーマン
面の普遍被覆空間を構成する.2
8 リーマン面の一意化定理
一意化定理の証明を終わらせよう.手順としては,
8.2 商リーマン面の構成
8.3 リーマン面の一意化
単連結リーマン面の一意化定理. まず次の定理は証明無しで用いよう:
定理 8.5 (ケーベ,ポアンカレ) 任意の単連結リーマン面 X は,C?, C,もしくは D と
等角同型である.
証明は簡単ではない.まずコンパクトな場合(C? )とそうでないでない場合に分け,さらにグリーン
関数が構成できる(D)かできない(C)かで区別される.
つづく

253:132人目の素数さん
22/06/10 16:11:55.08 0Da5gZei.net
>>252
つづき
9 タイヒミュラー空間の定義
今回の目標はとにかく,タ空間を定義することにある.最初に前回の補足として例外型・双曲型
リーマン面について解説したあと,言葉の準備(写像の持ち上げ,リーマン面上の擬等角写像)をし
て,定義に取り掛かる.定義の意味については,次回に.
以下,S, R をリーマン面とする.
9.2 写像の持ち上げ
9.3 リーマン面間の擬等角写像の定義
9.5 タイヒミュラー空間の定義
いよいよ,「リーマン面 S のタイヒミュラー空間」を定義する.とりあえず,形式的に定義を済ま
せてしまおう.
S とそのアトラス A を固定する.つぎに,別のリーマン面 R で,S からの向きを保つ擬等角写像
f : S → R が存在するようなもの全体を考える.もう少し形式的に,そのような f と R のペアとし
て (R, f) の形のもの全体を考えるのである.この写像 f をマーキング (marking) と呼び,(R, f) を
マークされたリーマン面 (marked Riemann surface) と呼ぶ.
その全体の集合に,次の同値関係を考えよう:
このとき,同値類の集合
T(S) = {(R, f)}/^T
を S のタイヒミュラー空間 (Teichm¨uller space) と呼ぶ.
このように定義を与えられても,大概の人にとっては意味不明であろう.たとえば,次のような疑
問点が生じる:
つづく

254:132人目の素数さん
22/06/10 16:12:29.20 0Da5gZei.net
>>253
つづき
10 タイヒミュラー空間とモジュライ空間
今回の目標は次の 2 点である:
・ モジュライ空間を定義し,タイヒミュラー空間との関係を明らかにすること.
・ これらの空間の具体例として,トーラスのタ空間とモ空間について概説すること.
・ Se からさらに S と同型なモデル S/G e を作る.
・ Se は X = C?, C, もしくは D と同型なので,モデル S/G e の構成方法をそのまま X で再現でき
る.そうして得られるモデルが S の一意化.
10.1 モジュライ空間
10.2 モジュラー群,あるいは写像類群
10.3 アトラスの分類とタイヒミュラー空間
10.4 トーラスのタイヒミュラー空間
タ空間の具体例として,トーラスのそれが上半平面
H := {x + yi ∈ C : y > 0}
と同一視できることについて概説しよう.15
11.1 単位円板 vs. 上半平面.
12.3 タ空間の複素構造
(引用終り)
以上

255:132人目の素数さん
22/06/10 17:51:00.04 0Da5gZei.net
>>251
追加
URLリンク(www1.econ.hit-u.ac.jp)
タイヒミュラー空間の基礎のキソ
名古屋大学大学院多元数理科学研究科
川平 友規
第47回函数論サマーセミナー
2012年8月27日

256:132人目の素数さん
22/06/12 18:27:16.23 Vf6rE6Wr.net
URLリンク(www.cajpn.org)
複素解析学ホームページ
URLリンク(www.cajpn.org)
修士・博士論文アーカイブ
URLリンク(www.cajpn.org)
名古屋大学大学院
多元数理科学研究科修士論文
C / Z との擬等角同値性について
著者氏名 藤野 弘基
指導教員 大沢 健夫
2014年2月
謝辞
 川平友規先生には, 本研究の進展において重要となった “擬円板の性質
を用いる” というアイデアを頂きましたことを, 厚く御礼申し上げます.
第 1 章 擬等角写像 1
1.1 曲線族モジュラス . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 極値的距離 . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 擬等角写像 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第1章 擬等角写像
Ahlfors?Beurling [3]によって導入された極値的長さを考えることによっ
て, 擬等角写像が特徴付けられる. これは擬等角写像の幾何学的定義と呼
ばれ現在では一般的によく知られていることである. この章では極値的長
さの逆数として与えられる量, 曲線族モジュラスを用いて擬等角写像を定
義する. 曲線族モジュラスは曲線族全体の上で定義された外測度を定める
など, 極値的長さに比べ扱いやすい性質を多く持つ.

257:132人目の素数さん
22/06/12 20:46:33.75 Vf6rE6Wr.net
>>255
URLリンク(en.wikipedia.org)
Teichmuller space
It can be viewed as a moduli space for marked hyperbolic structure on the surface, and this endows it with a natural topology for which it is homeomorphic to a ball of dimension 6g-6 for a surface of genus g >= 2. In this way Teichmuller space can be viewed as the universal covering orbifold of the Riemann moduli space.
Contents
1 History
2 Definitions
2.1 Teichmuller space from complex structures
2.2 The Teichmuller space of the torus and flat metrics
2.3 Finite type surfaces
2.4 Teichmuller spaces and hyperbolic metrics
2.5 The topology on Teichmuller space
2.6 More examples of small Teichmuller spaces
2.7 Teichmuller space and conformal structures
2.8 Teichmuller spaces as representation spaces
2.9 A remark on categories
2.10 Infinite-dimensional Teichmuller spaces
3 Action of the mapping class group and relation to moduli space
3.1 The map to moduli space
3.2 Action of the mapping class group
3.3 Fixed points
4 Coordinates
4.1 Fenchel?Nielsen coordinates
4.2 Shear coordinates
4.3 Earthquakes
5 Analytic theory
5.1 Quasiconformal mappings
5.2 Quadratic differentials and the Bers embedding
5.3 Teichmuller mappings
6 Metrics
6.1 The Teichmuller metric
6.2 The Weil?Petersson metric
7 Compactifications
7.1 Thurston compactification
7.2 Bers compactification
7.3 Teichmuller compactification
7.4 Gardiner?Masur compactification
8 Large-scale geometry
9 Complex geometry
9.1 Metrics coming from the complex structure
9.2 Kahler metrics on Teichmuller space
9.3 Equivalence of metrics
10 See also
11 References
12 Sources
13 Further reading
つづく

258:132人目の素数さん
22/06/12 20:47:04.31 Vf6rE6Wr.net
>>257
つづき
History
Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826-1866), who knew that 6g-6 parameters were needed to describe the variations of complex structures on a surface of genus g >= 2. The early study of Teichmuller space, in the late nineteenth?early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincare, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel.
The main contribution of Teichmuller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmuller space (introduced by Bers).
The geometric vein in the study of Teichmuller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmuller space, and this is a very active subject of research in geometric group theory.
(引用終り)
以上

259:132人目の素数さん
22/06/12 23:01:59.33 Vf6rE6Wr.net
擬等角写像 Quasiconformal mapping
URLリンク(en.wikipedia.org)
Quasiconformal mapping
Contents
1 Definition
2 A few facts about quasiconformal mappings
3 Measurable Riemann mapping theorem
4 Computational quasi-conformal geometry

260:132人目の素数さん
22/06/12 23:11:50.47 Vf6rE6Wr.net
似ているが、ちょっと違う
Quasiregular map:between Euclidean spaces Rn of the same dimension or, more generally,・・
URLリンク(en.wikipedia.org)
Quasiregular map
In the mathematical field of analysis, quasiregular maps are a class of continuous maps between Euclidean spaces Rn of the same dimension or, more generally, between Riemannian manifolds of the same dimension, which share some of the basic properties with holomorphic functions of one complex variable.
Contents
1 Motivation
2 Definition
3 Properties
4 Rickman's theorem
5 Connection with potential theory

261:132人目の素数さん
22/06/12 23:24:14.69 Vf6rE6Wr.net
Punctured Torus Group
URLリンク(www.cajpn.org)
複素解析学ホームページ 資料室
1998 Punctured Torus Groupに対するending lamination予想の解決(糸健太郎,小森洋平,須川敏幸,谷口雅彦)
目次・1-5章 PDF 1459KB URLリンク(www.cajpn.org)
6-9章 PDF 1452KB URLリンク(www.cajpn.org)
10-12章・参考文献 PDF 1546KB URLリンク(www.cajpn.org)

262:132人目の素数さん
22/06/18 16:30:24.72 KMJjixPB.net
q-parameter
URLリンク(arxiv.org)
Computing integral points on X+ns(p)
Aur´elien Bajolet, Yuri Bilu?
, Benjamin Matschke??
November 24, 2020
Contents
1 Introduction 1
2 Modular curves, nearest cusps and q-parameters 4
2.2 The q-parameter at a cusp
For P ∈ Ωc we define the q-parameter qc(P) by qc(P) = e^2πiτ(P)

263:132人目の素数さん
22/06/18 21:10:45.93 KMJjixPB.net
リーマン面
URLリンク(www.th.phys.titech.ac.jp)
武藤研究室 東京工大
URLリンク(www.th.phys.titech.ac.jp)
物理数学第一 平成18年度 学部 3学期
URLリンク(www.th.phys.titech.ac.jp)
第 13 章 解析接続
P6
13.2 Riemann 面
多価関数に対して,その定義域を制限することによって,1価関数が定義できる。いま,こ
のように制限された定義域である複素平面を何枚か特別な方法でつなぎ合わせ,多価関数を新
たにそこで定義された1価関数であるように解釈することができる。このとき,このように拡
張された定義域のことを Riemann 面 という。Riemann 面で新たに定義された関数は1価関
数であるので,1価関数の理論が適用できる。一般的に,関数 f(z) の Riemann 面は,z 平面
における f(z) の分岐点を結ぶように切れ込みを入れ,その切れ込みに沿って1つの複素平面
を別の複素平面につなぎ合わせて作られる。
1 log z の Riemann 面
複素平面を無限枚用意して,それぞれに,次のように番号をつける。
Rk 上における log z の値は
log z = log | z | + i arg z ( 2kπ <= arg z < 2(k + 1)π )
各平面 Rk(k = 0, ±1, ±2, ・・・)の実軸の
正の部分(分枝せっ線)を切り離し,
Rk の分枝せっ線の上岸を Rk+1 の分枝せっ線の下岸とつなぎ合わせる。
このようにしてつなぎ合わせた無限枚の複素平面 Rk (k = 0, ±1, ±2, ・・・)は連結した
1つの複素平面 R となる。
対数関数 log z bェ,複素平面 R で定義されるとみなすと,関数 ω = log z は z と ω を1
対1に対応させる。この複素平面 R を log z の Riemann 面という。

264:132人目の素数さん
22/06/18 21:11:09.15 KMJjixPB.net
リーマン面2
URLリンク(coral.t.u-tokyo.ac.jp)
藤原研究室 東大
URLリンク(coral.t.u-tokyo.ac.jp)
数学2 複素関数論とフーリエ解析
URLリンク(coral.t.u-tokyo.ac.jp)
第一部:複素関数論
第 8 章
解析接続とリーマン面
複素解析の最も重要な結論の 1 つ、解析接続について説明しよう。解析接
続によって、正則関数が或る領域たとえば実軸上で定義されたとき、関数の
定義域を拡張していく方法が与えられる。
8.2 解析接続とリーマン面
複素関数 f1(z) の正則領域が D1; f2(z) の正則領域が D2であり、D1と D2
の共通領域が D0であるとする(図 8.2)。D0内の任意の点 zで f1(z) = f2(z)
であれば、f1の D2内への自然な接続は f2である。f2(z) を f1(z) の D2への解
析接続(analytic continuation)という。
D1と D2の合併集合が単連結領域であるとき、D2における f1の解析接続
f2が可能であればそれは一意的である。

265:132人目の素数さん
22/06/22 18:01:21.90 2F1Gh5du.net
URLリンク(www2.meijo-u.ac.jp)
第 15 回整数論サマースクール
「種数の高い代数曲線と Abel 多様体」2007
報告集
目 次
1. リーマン面と代数曲線 1
吉冨 賢太郎 (大阪府立大学)
2. 代数曲線の Riemann-Roch の定理 15
小川 裕之 (大阪大学)
3. Abel-Jacobi の定理 I 61
軍司圭一 (東京大学)
4. Abel-Jacobi の定理 II 81
尾崎 学 (近畿大学理工学部), 梅垣 敦紀 (早稲田大学高等研究所)
5. 種数 1 における理論 113
山内 卓也 (広島大学)
6. 超楕円函数論 131
大西 良博 (岩手大学)
7. シグマ関数の代数的表示 177
中屋敷 厚 (九州大学)
8. Inversions of Abelian Integrals 191
難波 誠 (追手門学院大学)
9. CM 型の Abel 曲面について 199
梅垣 敦紀 (早稲田大学高等研究所)
10. 暗号理論に向けての因子の加法の計算法 211
志村 真帆呂 (東海大学)
11. 代数曲線暗号とその安全性 223
松尾 和人 (情報セキュリティ大学院大学)
12. アーベル多様体の有理等分点について 239
小川 裕之 (大阪大学)
13. Algebraic Theory of Abelian Varieties via Schemes 247
小林真一 (名古屋大学)
14. 超楕円曲線のヤコビ多様体の形式群 265
西来路文朗 (広島国際大学)
15. アーベル多様体の Birch-Swinnerton-Dyer 予想についての話題 291
安田 正大 (京都大学)

266:132人目の素数さん
22/06/23 07:06:46.29 a95T6DpP.net
>>490 補足と訂正
 P37 平面曲線 w=f(z) から f(w,z)=0 なる複素平面曲線(陰関数) への視点の転換がある
 (定義域と値域の区別がなくなる)
 (P38のヤコビアン判定法 (下記陰函数定理)を使う)
  ↓
1)複素平面曲線(陰関数) への視点の転換は、良いが、
 ここは陰函数定理wikipediaの「例と導入」に説明があるとおり
 一価関数でない場合にも、曲線の一部に注目して、y=g(x)なる微分可能関数の存在を示すことにある(y=g(x)はwikipediaの表記)
 (P13 楕円曲線 で、y^2=x^3+ax^2+bx+c として、y^2=・・のまま。これで、y= の形になってない段階で、実質は陰関数ですね URLリンク(imgur.com)
2)なお、リーマン面の数学的定義では、特に定義域うんぬんの記述はないが、
 P36にあるように、位相空間X (ハウスドルフ)として、Ui∈X で、写像φi:Ui→C (Cは複素平面(P37記述より))
 で、φiが正則写像(P37)であることを要求しているので
 Xは、写像φiの定義域です
3)なので、具体的な関数w=f(z)(例えば寺杣P41超楕円曲線)を考えるとき、そのリーマン面とは、定義域を複素平面から位相空間X に拡張したものです
 (なお「自明なリーマン面の例として、複素平面Cの開集合が挙げられる」(P37)とあります)
詳しくは、寺杣 P36~37 を見てください
以上、補足と訂正でした

267:132人目の素数さん
22/06/23 07:07:31.38 a95T6DpP.net
>>266
誤爆すまん

268:132人目の素数さん
22/06/23 18:04:00.64 6okYm70B.net
URLリンク(flag3.github.io)
flag3 のページ
URLリンク(flag3.github.io)
基本群と被覆空間の Galois 理論
flag3 (@flag3833753)
2020 年 6 月 28 日 (最終更新日:2021 年 11 月 11 日)
概要
Galois 理論という,数学的対象の構造を Galois 群や基本群と呼ばれる群を用いて記述するという理論
があります.特に被覆空間の Galois 理論という,unloopable な位相空間上の被覆空間全体がなす圏を基
本群によって記述するという理論があります.これは体の Galois 理論という,体上の有限 étale 代数全体
がなす圏は絶対 Galois 群によって記述されることの類似になっています.本原稿では被覆空間の理論を紹
介したいと思います.前提知識として群論・位相空間論の初歩的な知識は仮定します.

269:132人目の素数さん
22/06/23 18:28:13.44 6okYm70B.net
URLリンク(pantodon.jp)
Algebraic Topology
被覆空間
基本群と被覆空間は密接な関係にある。また, ファイバー束や fibration の練習としても被覆空間を学ぶことは重要である。 そのため, [玉20] では, 最初にファイバー束の toy model として被覆空間についてまとめた。 また, 数学セミナーにも簡単な説明 [玉13] を書いた。
Riemann面など上では分岐被覆を考えることが多い。
分岐被覆 (branched covering)
具体的な問題からできる被覆空間は, monodromy と密接に関連している。
monodromy
被覆の概念は, 位相空間以外にも拡張されている。 基本群に類するものがあれば, 関連して covering があると考えてよいだろう。例えば, 体のGalois理論など。
そのような状況を扱うための一般的な枠組みとして Grothendieck が SGA 1 [SGA103] で導入したのが, Galois category である。名前の通り, Galois理論と被覆空間の理論を統一して扱うことを目的とする。 これにより scheme の étale fundamental group などが定義できる。
Galois categroy
ただ, このGrothendieck の枠組みに入らないものもある。

270:132人目の素数さん
22/06/25 10:39:31.42 rjLBI7WT.net
URLリンク(www.wannyan.net)
Scientific Doggie?数理の楽しみ
URLリンク(www.wannyan.net)
楕円積分と楕円関数
URLリンク(www.wannyan.net)
楕円積分と楕円関数

271:132人目の素数さん
22/06/25 11:24:41 rjLBI7WT.net
URLリンク(www.ist.aichi-pu.ac.jp)
「実 / 複素ゼータの世界」から「p 進ゼータの世界」へ ?
東京電機大学未来科学部 † 原 隆 ‡
? 第 26 回整数論サマースクール『多重ゼータ値』報告集原稿 2018

URLリンク(www.ist.aichi-pu.ac.jp)
第26回整数論サマースクール報告集 2018
「多重ゼータ値」

272:132人目の素数さん
22/06/25 13:34:33.32 rjLBI7WT.net
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録
1073 巻 1998 年 1-48
RIGID 解析入門
加藤文元
九州大学大学院数理学研究科
この小論は 1998 年 5 月 6 日から同 8 日まで京都大学数理解析研究所にて開催さ ’
れた研究集会「リジッド幾何学と群作用」 において筆者が行った講演「p 進解析入門
I、II」の報告として、 その予稿をまとめ、更に幾つかの点について必要と思われる部
分を付足したものである.
CHAPTER 1
TATE による RIGID 解析.
1. 基本思想.
まず、 簡単な例について複素解析的状況との比較から始めよう 1
複素解析の時と全く同様に解析学を展開しようと
すると、 実は非常に本質的な問題が生じる. これを具体的に見てみよう:
即ち_、解析接続の原理_、つまり「 一致の原理} (principle of unique continuation)」に関
する問題点である. よく知られている様に、K の距離位相は全不連結 (totally disconnected) である、即ち 2 点以上からなる部分集合は連結でない (例えば [Gouv^ea 1997,2.3.8] を参照). 特に任意の開集合は決して連結ではない 4. 従って、意味のある解析接
続の概念を得る事はこのままでは不可能である; ある点のまわりで局所的に巾級数で
書けても、その点以外の点のまわりでのその関数の性質は、それがどんなに近い点で
あっても、 もとの点のまわりの性質とは全く関連が無い、 という事になってしまう.
読者は、 これらの問題は上記の関数の解析性の定義に現れた「局所的」という概念
がそもそもの災いの発端であると気付かれるだろう. 念のためもう -度整理すると:
つづく

273:132人目の素数さん
22/06/25 13:34:57.48 rjLBI7WT.net
>>272
つづき
(1) 既にある関数が「解析的」 であるかどうかを、 巾級数で書けるどいう 「局所的」性質で特徴付ける事は十分意味のある事であるが、
(2) 逆にその 「局所的」性質だけからでは意味のある 「解析関数」 を特徴付ける事は出来ない、
(3) なぜなら、位相があまりにも細かすぎるため解析接続の原理が有意義に働かないからである.
従って、 この「局所的」 という概念を改良する事が必要となる. これは (少なく
とも筆者にとっては) 非常にデリケートでわかりにくい話となってしまう可能性があ
るので、 ここで問題点を今一度整理しつつ反省してみようと思う.
「局所的」 を改良しようと思ったら、 ある程度以上細かくなりす
ぎない様に、 開被覆の取り方に制限を加えるという事が最も重要なポイントとなる.
そこで、 この 「開被覆の取り方に制限を加える」 という事を実際に実行する際の
処方箋を、 Tate のアイデアに従って段階的に概観してみよう:
(引用終り)
以上

274:132人目の素数さん
22/06/25 13:36:16.46 rjLBI7WT.net
URLリンク(www2.meijo-u.ac.jp)
リジッド幾何学の概説
加藤文元
2008 年度代数学シンポジウムでの筆者の講演に基づいて報告致します.
1. はじめの一歩
歴史的には,リジッド幾何学は非アルキメデス的付値体上の解析幾何学と
してスタートした.
1.2. 非アルキメデス的函数論.
非アルキメデス的函数論においては,複素函数論の場
合とは本質的に異なった解析接続の理論を展開する必要がある.そして,こ
の点がリジッド幾何学における二つ目のキーワード「やや大域化された局所」
という考え方につながっていくポイントなのである.
2. リジッド幾何学の出発点
2.1. 歴史. 1961 年の Harvard 大学における J. Tate のセミナーにおいて,初
めてリジッド幾何学のアイデアが紹介された.このセミナーノートは Tate 本
人の承諾なしに回覧され,Inventiones から出版までされてしまった.この内容
を踏まえて,Grauert-Remmert が 1966 年に非アルキメデス的函数論に Tate の
アイデアを導入する.ここでは Weierstrass の準備定理の非アルキメデス版と
いった,函数論を展開する上での基本的な理論が展開されている.また,今日
でも使われている ‘affinoid’ という用語を初めて用いたのも彼らである.
つづく

275:132人目の素数さん
22/06/25 13:36:37.88 rjLBI7WT.net
>>274
つづき
「やや大域化された局所」の一つ
のわかりやすい現れとして,以下のものを挙げる:代数幾何学,複素解析幾
何学,そしてリジッド解析幾何学における「最も基本的な」空間とは何か?
・ 代数幾何学においては,それはアフィン直線 A1k= Spec k[T] であり,
・ 複素解析幾何学においては,単位開円盤 ? = {z ∈ C | |z| < 1} であろう.
・ リジッド解析幾何学において,それは単位閉円盤
 D1K = {z ∈ K | |z| ? 1}.
である(前述の通り,これは開集合でもあることに注意).
このような空間の取り方にも,複素解析的状況と代数幾何的状況との間の
「中間的な」局所の概念を持つ幾何学という,リジッド幾何学特有のあり方が
現れている.ただし,ここで大事な(そして技術的に難しい)ことは,ここ
で言う単位閉円盤には,単なる距離位相とは異なる位相を考えているという
ことである.これについては,なぜ「閉」円盤を考えるのが自然なことなの
か,ということも含めて,以下で説明を試みる.
3. 単位閉円盤
というわけで,Tate による古典的なリジッド幾何学の基本的なアイデアに
ついて,特に単位閉円盤という対象を通して説明しよう.
(引用終り)
以上

276:132人目の素数さん
22/06/25 14:23:33.30 rjLBI7WT.net
URLリンク(www.jstage.jst.go.jp)
J-STAGEトップ/数学/55巻(2003)4号/書誌
Rigidanalyticgeometry
加藤文元
2003年55巻4号p.392-417
URLリンク(www.jstage.jst.go.jp)
1導入
複素数体C上の代数幾何学では,複素解析的な視点や手法はしばしば有効である.主にSerreの
GAGA原理に基づいて,技術的な自由度のより大きな解析的手法を用いることは,代数幾何学の様々
な側面において大きな成功をもたらしてきた.端的に言って,表題のrigid解析幾何学は,この様な
解析的’理論をp-進数体などの非Archimedes的付値体上で行い,これらの体上の代数幾何学への有
効な応用を与える枠組みである.
本稿ではrigid解析の草創期から現代に至る発展を概観し,諸理論の間の関係を出来るだけ明らかに
することを目的とした.
さて,本論に入る前に導入として,幾つか事項をざっとまとめておこう.
・最初の困難:解析接続:一複素解析においてCの絶対値付値は,それによって‘収束巾級数'の
概念を得ることが出来るという意味で,最も基本的なものであった.完備非Archimedes的付値体K
においても,全く同様に収束巾級数の概念は得られる.従って,同様に解析函数の概念を得ることが
可能だと思われるかも知れない.しかし,ここにはKの位相的性質から来る根本的な困難がある.
困難その1:付値によるK上の距離位相は全不連結(totallydisconnected)であり,空でない開集
合は全て連結でない.いかなる開集合も,いくらでも多くの開集合(例えば開円盤)で分割出来てしま
う.従って,与えられた開集合上の6各点で収束巾級数に展開可能’という条件で正則函数を定義する
と,その全体は非常に巨大な集合となり,そのままで意味のある解析理論を構築することは出来ない.
つづく

277:132人目の素数さん
22/06/25 14:24:04.03 rjLBI7WT.net
>>276
つづき
困難その2:距離の非Archimedes性からわかることであるが,K内の任意の二つの開円盤は非自
明な交わりを持たない,つまり交わるなら一方が他方に包含される.もし巾級数Σα調が0<T<
∞を収束半径に持つとき,円盤{z∈K|z|くr}内のどの点で巾級数展開し直しても,その収束円
は元の円盤{z∈K|z|くr}に一致してしまう.
一つ目の困難は,正則函数を‘局所的’な条件で定義することは出来ないことを,二つ目は複素解析
におけるのと同様な解析接続’の考え方でも,良い正則関数の概念を得ることは出来ない,というこ
とを示唆している.
この様な困難は全く非Archimedes的解析に特有のものであり,その克服が非Archimedes的函数
論の構築には不可欠なことであった.その過程で重要なのは‘正しい正則函数の概念は何か’という問
題と同時に,より基本的な・正しい『連結領域』の概念は何か’という問題も考えられなければならな
かったという点である.これらは局所理論に止まっている限りは意味の無い問いであるが,そこから
出発して大域的な解析函数の理論を構築する際に回避出来ない問題であった.
・‘やや大域化された局所,の考え方:一この困難は非Archimedes的距離位相が‘細かすぎる’こ
とに由来している.
謝辞.本稿§5は藤原一宏氏の許可の下,2001年1月10日及び11日の藤原氏の北海道大学での講
演のノートを基にして記述した.藤原氏に感謝したい.また査読者の方々からは,文章構成などに関
して多くのお知恵を頂いた.査読者の方々に感謝したい.
(引用終り)
以上

278:132人目の素数さん
22/06/25 20:14:53.38 rjLBI7WT.net
URLリンク(www.math.tsukuba.ac.jp)
田崎博之のページ
2023年3月末日に勤務している筑波大学を定年退職します。 それに伴ってこのホームページは閉鎖します。 その際、ホームページの全部または一部をどこかに移設しようと考えています。 移設先や内容についてアドバイスやご意見等ありましたら、 お知らせいただければ幸いです。
URLリンク(www.math.tsukuba.ac.jp)
講義
URLリンク(www.math.tsukuba.ac.jp)
数理物質科学研究科:微分幾何学I(月2)
ファイバー束
pdf : 講義資料(7月22日分まで)
URLリンク(www.math.tsukuba.ac.jp)
URLリンク(www.math.tsukuba.ac.jp)
第1章 基本群と被覆空間

279:132人目の素数さん
22/06/25 23:10:27.85 rjLBI7WT.net
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
Hiroshi Hirai
Associate Professor
Department of Mathematical Informatics,
Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, 113-8656, Japan.
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
R2 幾何数理工学
位相幾何: 被覆空間 [ノート][きれいなノートupdate]
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
幾何数理工学ノート
位相幾何:被覆空間
平井広志
東京大学工学部 計数工学科 数理情報工学コース
東京大学大学院 情報理工学系研究科 数理情報学専攻
hirai@mist.i.u-tokyo.ac.jp
協力:池田基樹(数理情報学専攻 D1)
7 被覆空間
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
幾何数理工学ノート
位相幾何:ホモロジーの計算
平井広志
東京大学工学部 計数工学科 数理情報工学コース
東京大学大学院 情報理工学系研究科 数理情報学専攻
hirai@mist.i.u-tokyo.ac.jp
協力:池田基樹(数理情報学専攻 D1)
8 ホモロジーの計算

280:132人目の素数さん
22/06/29 13:53:28 gXl0/xIG.net
IUTゴミ箱へ他人のpdfを収拾するとは
たいへん失礼です
ただちにおやめください


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

279日前に更新/383 KB
担当:undef