IUT‚ð“Ç‚Þ‚œ‚ß‚Ì—pŒê ..
[2ch|¥Menu]
106:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/04/17 18:23:51.69 cr30r3uy.net
‚â‚ê‚â‚ê
C³‚Ÿ‚Á‚Ä‚æ‚—
URLØÝž(www.kurims.kyoto-u.ac.jp)
–]ŒŽ ÅVî•ñ
2021”N04ŒŽ15“ú
@Ei˜_•¶jC³”Å‚ðXV URLØÝž(www.kurims.kyoto-u.ac.jp)
@iC³‰ÓŠ‚̃ŠƒXƒgjF URLØÝž(www.kurims.kyoto-u.ac.jp)
EAdded an Introduction
EIn \S 1.3, added "(UndIg)", as well as a reference to "(Undig)" in \S 2.1
ERewrote various portions of \S 1.5
ERewrote Example 2.4.4
EModified the title of Example 2.4.5
EAdded Example 2.4.6
ESlightly modified the paragraph at the beginning of \S 3
ESlightly modified the final portion of \S 3.1 concerning (FxRng), (FxEuc), (FxFld)
EAdded Example 3.9.1 and made slight modifications to the surrounding text
EIn \S 3.10, rewrote the discussion preceding (Stp1)
EIn \S 3.11, slightly modified the discussion following ({\Theta}ORInd)
@@On the Essential Logical Structure of Inter-universal Teichmuller
@@@Theory in Terms of Logical AND "È"/Logical OR "É" Relations:
@@@Report on the Occasion of the Publication of the Four Main Papers
@@@on Inter-universal Teichmuller Theory.
2021”N03ŒŽ06“ú
@Ei˜_•¶j‰F’ˆÛƒ^ƒCƒqƒ~ƒ…[ƒ‰[—˜_‚ÉŠÖ‚·‚é˜_•¶4•Ñ‚̏o”Å‚ð‹L”O‚µ‚āA
@@V˜_•¶‚ðŒfÚF
@@On the Essential Logical Structure of Inter-universal Teichmuller
@@@Theory in Terms of Logical AND "È"/Logical OR "É" Relations:
@@@Report on the Occasion of the Publication of the Four Main Papers
@@@on Inter-universal Teichmuller Theory.

107:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/04/17 20:09:05.72 cr30r3uy.net
>>106 ’ljÁ
d” ‚Ì‹÷‚Å‚·‚ª
‰º‹L‚Ì
h2021”N01ŒŽ15“ú
@Ei˜_•¶jC³”Å‚ðXViC³‰ÓŠ‚̃ŠƒXƒgjFh‚ª
u2021”N04ŒŽ15“úv‚̏C³”Å‚ð‘‚­‚Æ‚«‚̃~ƒXƒRƒs[i‚³‚ç‚ɉº‚́h2021”N01ŒŽ15“úh‚Æ‘S‚­“¯‚¶“à—ej
i‘œ•ª–{“–‚Í•s—v‚È•”•ª‚ðAŽv‚í‚ž’m‚ç‚·ƒRƒs[‚µ‚Ä‚µ‚Ü‚Á‚œ‚Ý‚œ‚¢j
‚¢‚‹C•t‚¢‚ďC³‚·‚é‚Ì‚©‚ȁHiOOG
URLØÝž(www.kurims.kyoto-u.ac.jp)
–]ŒŽÅVî•ñ
2021”N04ŒŽ15“ú
@Ei˜_•¶jC³”Å‚ðXViC³‰ÓŠ‚̃ŠƒXƒgjF
@@On the Essential Logical Structure of Inter-universal Teichmuller
@@@Theory in Terms of Logical AND "È"/Logical OR "É" Relations:
@@@Report on the Occasion of the Publication of the Four Main Papers
@@@on Inter-universal Teichmuller Theory.
2021”N01ŒŽ15“ú
@Ei˜_•¶jC³”Å‚ðXViC³‰ÓŠ‚̃ŠƒXƒgjF
2021”N03ŒŽ06“ú
@Ei˜_•¶j‰F’ˆÛƒ^ƒCƒqƒ~ƒ…[ƒ‰[—˜_‚ÉŠÖ‚·‚é˜_•¶4•Ñ‚̏o”Å‚ð‹L”O‚µ‚āA
@@V˜_•¶‚ðŒfÚF
@@On the Essential Logical Structure of Inter-universal Teichmuller
@@@Theory in Terms of Logical AND "È"/Logical OR "É" Relations:
@@@Report on the Occasion of the Publication of the Four Main Papers
@@@on Inter-universal Teichmuller Theory.
2021”N01ŒŽ15“ú
@Ei˜_•¶jC³”Å‚ðXViC³‰ÓŠ‚̃ŠƒXƒgjF
@@Combinatorial Construction of the Absolute Galois Group of the Field of
@@@@Rational Numbers.

108:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/04/17 20:12:36.12 cr30r3uy.net
>>105
>ƒOƒƒ^ƒ“‰F’ˆ˜_‚à‚»‚Ì—Þ‚¢‚Å
>Ì‚̏W‡˜_‚́hUhi’P‚È‚é‘S‘̏W‡j‚Ƃ́AˆÓ–¡‚ªˆá‚€‚Ì‚Å‚·
>‚»‚±‚炪A—]Œv‚ɍ¬—‚ðµ‚¢‚Ä‚¢‚é‚æ‚€‚ÉŽv‚¢‚Ü‚·
(•â‘«)
EƒOƒƒ^ƒ“‰F’ˆ˜_‚ðA‚¢‚­‚‚àì‚éH
E‚»‚Ì•¡”‚̃Oƒƒ^ƒ“‰F’ˆ˜_‚ÌŠÔ‚ðs‚Á‚œ‚è—ˆ‚œ‚èH
E‚»‚±‚Ü‚Å‘åŒUŸ‚Șb‚Å‚à‚È‚³‚»‚€‚ÉŒ©‚Š‚邯‚ǁiOO

109:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/04/25 18:03:40.36 x2gQxWeE.net
URLØÝž(www.youtube.com)
IUT overview: What papers are involved? Where does it start?
Taylor Dupuy 20151217
In this video I give an overview of what papers are involved in Mochizuki's work on ABC. Hopefully this is useful to get a scope of things.

110:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/05/01 08:46:56.11 4gUFX+vb.net
Inter-universal geometry ‚Æ ABC—\‘z (‰ž‰‡ƒXƒŒ) 54
œÚØÝž(math”Â:253”Ô)
URLØÝž(www.nikkei.com)
”Šw‚Ì“ï–âABC—\‘z@uØ–Ÿv‚É‚àŠwŠE‚Í—â‚â‚â‚©
2021”N4ŒŽ30“ú 11:00 [—L—¿‰ïˆõŒÀ’è] “úŒo i•ÒWˆÏˆõ@Â–ؐTˆêj
”Šw‚̐¢ŠE‚ł́AŽžŠÔ‚ª‚œ‚Á‚Ä‚©‚çØ–Ÿ‚ª³‚µ‚©‚Á‚œ‚Æ‚í‚©‚邱‚Æ‚ª‚ ‚éB—á‚Š‚΁AƒhƒCƒc‚̃q[ƒOƒi[‚Í1952”NAŽjãÅ‚‚̐”ŠwŽÒ‚Æ‚¢‚í‚ê‚éƒKƒEƒX‚ª—\‘z‚µ‚œu—ސ”–â‘èv‚ÉŠÖ‚·‚éØ–Ÿ‚ð”­•\‚µ‚œB’·‚¢ŠÔ–³Ž‹‚³‚ê‚œ‚ªA60”N‘ãŒã”Œ‚É•¡”‚̐”ŠwŽÒ‚ª‚»‚ê‚Œ‚ꌟ“¢‚µAˆê•”‚É–â‘肪‚ ‚é‚à‚Ì‚Ì–{Ž¿“I‚ɐ³‚µ‚©‚Á‚œ‚ƏؖŸ‚³‚ê‚œB¡‚͒藝‚Æ‚µ‚Ä–Œ‚ðŽc‚·B
(ˆø—pI‚è)
iŽQlj
URLØÝž(ja.wikipedia.org)
ƒq[ƒOƒi[“_
ƒq[ƒOƒi[“_(ƒw[ƒOƒi[“_)i‰p: Heegner pointj‚Ƃ́Aƒ‚ƒWƒ…ƒ‰[‹Èüã‚Ì“_‚Å‚ ‚Á‚āAã”Œ•œ–Ê‚Ì quadratic imaginary point ‚Ì‘œ‚Æ‚È‚Á‚Ä‚¢‚é‚æ‚€‚È‚à‚Ì‚Å‚ ‚éBƒuƒ‰ƒCƒAƒ“Eƒo[ƒ` (Bryan Birch) ‚É‚æ‚è’è‹`‚³‚êAƒNƒ‹ƒgEƒw[ƒOƒi[i‰pŒê”Łj (Kurt Heegner) ‚Ɉö‚ñ‚Å–Œ‚¯‚ç‚ê‚œBƒq[ƒOƒi[‚͗ސ” 1 ‚Ì‹•“ñŽŸ‘̏ã‚̃KƒEƒX‚Ì—\‘z‚ðØ–Ÿ‚·‚é‚œ‚ß‚É—ÞŽ—‚̃AƒCƒfƒA‚ð—p‚¢‚œB
ƒOƒƒXEƒUƒMƒG‚̒藝 (Gross & Zagier 1986) ‚́A“_ s = 1 ‚É‚š‚¯‚é‘ȉ~‹Èü‚ÌLŠÖ”‚Ì”÷•ª‚Ì‚±‚Ƃ΂Ńq[ƒOƒi[“_‚̍‚‚³‚ð‹Lq‚·‚éB‚Æ‚­‚ɑȉ~‹Èü‚́i‰ðÍ“IjŠK”‚ª 1 ‚Å‚ ‚ê‚΃q[ƒOƒi[“_‚Í–³ŒÀˆÊ”i‚µ‚œ‚ª‚Á‚め[ƒfƒ‹Eƒ”ƒFƒCƒ†ŒQi‰pŒê”Łj‚ÌŠK”‚Í1ˆÈãj‚̋Ȑüã‚Ì—L—“_‚ð\¬‚·‚é‚Ì‚ÉŽg‚€‚±‚Æ‚ª‚Å‚«‚éB‚æ‚èˆê”ʂɁAGross, Kohnen & Zagier (1987) ‚́Aƒq[ƒOƒi[“_‚ÍŠe³®” n ‚ɑ΂µ‹Èüã‚Ì—L—“_‚ð\¬‚·‚é‚Ì‚ÉŽg‚€‚±‚Æ‚ª‚Å‚«‚±‚ê‚ç‚Ì“_‚̍‚‚³‚̓EƒFƒCƒg 3/2 ‚̃‚ƒWƒ…ƒ‰[Œ`Ž®‚ÌŒW”‚Å‚ ‚邱‚Æ‚ðŽŠ‚µ‚œB
‚‚­

111:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/05/01 08:47:39.05 4gUFX+vb.net
>>110
‚‚«
ƒRƒŠƒ”ƒ@ƒMƒ“i‰pŒê”Łj‚ÍŒã‚ɃIƒCƒ‰[Œni‰pŒê”Łj‚ð\¬‚·‚é‚œ‚߂Ƀq[ƒOƒi[“_‚ð—p‚¢A‚»‚ê‚É‚æ‚Á‚ÄŠK” 1 ‚̑ȉ~‹Èü‚ɑ΂·‚éƒo[ƒ`EƒXƒEƒBƒ“ƒi[ƒgƒ“ƒ_ƒCƒ„[—\‘z‚Ì‘œ‚­‚ðØ–Ÿ‚µ‚œB?Žõ•i‰pŒê”Łj‚̓OƒƒXEƒUƒLƒG‚̒藝‚ð‘ȉ~‹Èü‚©‚烂ƒWƒ…ƒ‰[ƒA[ƒxƒ‹‘œ—l‘̂̏ꍇ‚ւƈê”ʉ»‚µ‚œBƒuƒ‰ƒEƒ“‚͐³•W”‚Ì‘åˆæ‘̏ã‚ÌŠK” 1 ‚̑ȉ~‹Èü‚Ì‘œ‚­‚ɑ΂µ‚ăo[ƒ`EƒXƒEƒBƒ“ƒi[ƒgƒ“ƒ_ƒCƒ„[—\‘z‚ðØ–Ÿ‚µ‚œ (Brown 1994)B
ƒq[ƒOƒi[“_‚ÍŠK” 1 ‚̑ȉ~‹Èüã‚́A’Pƒ‚È•û–@‚Å‚ÍŒ©‚‚¯‚邱‚Æ‚Ì‚Å‚«‚È‚©‚Á‚œA”ñí‚É‘å‚«‚¢—L—“_‚ðŒvŽZ‚·‚é‚Ì‚ÉŽg‚€‚±‚Æ‚ª‚Å‚«‚éiƒT[ƒxƒC‚Í (Watkins 2006) ‚ðŽQÆjBƒAƒ‹ƒSƒŠƒYƒ€‚ÌŽÀ‘•‚́AMagma‚âPARI/GP‚ʼn”\‚Å‚ ‚éB
URLØÝž(sub-asate.ssl-lolipop.jp)
miniwiki
—ސ”–â‘è
i‹•“ñŽŸ‘̂́jƒKƒEƒX‚̗ސ”–â‘è(Gauss class number problem)‚́A’ʏí‚É—‰ð‚³‚ê‚Ä‚¢‚é‚æ‚€‚ɁA ŠeX‚Ì n ? 1 ‚ɑ΂µ—ސ”‚ª n ‚Å‚ ‚é‹•“ñŽŸ‘Ì‚ÌŠ®‘S‚ȃŠƒXƒg‚ð‚à‚œ‚炵‚œB‚±‚Ì–â‘è‚Ì–œ–Œ‚͈̑å‚Ȑ”ŠwŽÒƒJ[ƒ‹EƒtƒŠ[ƒhƒŠƒqEƒKƒEƒX(Carl Friedrich Gauss)‚É‚¿‚È‚ñ‚Å‚¢‚éB‚±‚Ì–â‘è‚́A‚Ü‚œA‘㐔‘Ì‚Ì”»•ÊŽ®‚̍€‚Å‹Lq‚·‚邱‚Æ‚à‚Å‚«‚éBŽÀ“ñŽŸ‘Ì‚É‚àŠÖ˜A‚µ‚œ–â‘肪‚ ‚èA‚»‚̐U‚é•‘‚¢‚Í
dš-‡
‚Å‚ ‚éB
‚±‚Ì–â‘è‚̍¢“ï‚È“_‚́AŒÀŠE‚Ì—LŒø(effective)‚ÈŒvŽZ‚Å‚ ‚éB—^‚Š‚ç‚ê‚œ”»•ÊŽ®‚ɑ΂µA—ސ”‚ðŒvŽZ‚·‚邱‚Ƃ͈Ղµ‚­A—ސ”‚Ì”ñ—LŒø(ineffective)‚ȉºŠE‚ð‹‚ß‚é•û–@‚Í‚¢‚­‚‚©‚ ‚邪i”ñ—LŒø‚Ƃ́AŒvŽZ‚Í‚Å‚«‚È‚¢‚ªA’萔‚Å‚ ‚é‚Æ‚¢‚€‚±‚Æ‚Ì‚Ý‚í‚©‚邱‚Æ‚ðˆÓ–¡‚·‚éjA‚µ‚©‚µ—LŒø‚ÈŒÀŠE‚ð‹‚ßiƒŠƒXƒg‚ÌŠ®‘S‚ȏؖŸj‚͓‚¢B
Contents
1 Œ³X‚̃KƒEƒX‚Ì—\‘z
2 –{–â‘è‚̏ó‹µ
3 —ސ” 1 ‚Ì”»•ÊŽ®‚̃ŠƒXƒgƒAƒbƒv
4 Œ»‘ã‚Ì”­“W
5 ŽÀ“ñŽŸ‘Ì
‚‚­

112:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/05/01 08:48:29.31 4gUFX+vb.net
>>111
‚‚«
Œ»‘ã‚Ì”­“W
‚æ‚è‹ß”N‚Ì”­“W‚́An = 1 ‚̏ꍇ‚ªƒNƒ‹ƒgEƒq[ƒOƒi[iEnglish”Łj(Kurt Heegner)‚É‚æ‚è‹c˜_‚³‚êAƒ‚ƒWƒ…ƒ‰Œ`Ž®‚⃂ƒWƒ…ƒ‰•û’öŽ®iEnglish”Łj(modular equation)‚ðŽg‚¢A‚»‚Ì‚æ‚€‚È‘Ì‚Í‘¶Ý‚µ‚È‚¢‚±‚Æ‚ðŽŠ‚µ‚œB‚±‚ÌŽdŽ–‚͍ŏ‰‚͎󂯓ü‚ê‚ç‚ê‚È‚©‚Á‚œ‚ªA‚æ‚èÅ‹ß‚̃nƒƒ‹ƒhEƒXƒ^[ƒNiEnglish”Łj(Harold Stark)‚âƒuƒ‰ƒCƒAƒ“Eƒo[ƒ`iEnglish”Łj(Bryan Birch)‚É‚æ‚è•]‰¿‚³‚êAƒq[ƒOƒi[‚ÌŽdŽ–‚ª—‰ð‚³‚ê‚é‚æ‚€‚É‚È‚Á‚œBƒXƒ^[ƒNEƒq[ƒOƒi[‚̒藝iEnglish”Łj(Stark?Heegner theorem)‚âƒq[ƒOƒi[”iEnglish”Łj(Heegner number)‚ðŽQÆBŽÀÛ‚́A“¯ŽžŠú‚ɃAƒ‰ƒ“EƒxƒCƒJ[(Alan Baker)‚́A”‘̂̑ΐ”‚̐üŒ^Œ`Ž®ã‚̃xƒCƒJ[‚̒藝‚Æ‚µ‚Ä’m‚ç‚ê‚Ä‚¢‚āAŠ®‘S‚ɈقȂé•û–@‚Å‰ð‚©‚ê‚Ä‚¢‚éBn = 2 ‚̏ꍇ‚́A­‚µŒã‚ŃxƒCƒJ[‚ÌŽdŽ–‚̉ž—p‚Æ‚µ‚āAŒŽ—“I‚É‚Í‰ð‚­‚±‚Æ‚ªŽŽ‚Ý‚ç‚ê‚Ä‚¢‚éBiBaker (1990)‚ðŽQÆj
—ސ” 1 ‚Ì‹•“ñŽŸ‘Ì‚ÌŠ®‘SƒŠƒXƒg‚́AQ(k--ã) ‚Å‚±‚Ì k ‚ÍŽŸ‚Ì’†‚̈ê‚‚ł ‚éB
-1,-2,-3,-7,-11,-19,-43,-67,-163.
URLØÝž(en.wikipedia.org)
Class number problem
Contents
1 Gauss's original conjectures
2 Status
3 Lists of discriminants of class number 1
4 Modern developments
5 Real quadratic fields
(ˆø—pI‚è)
ˆÈã

113:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/05/09 16:44:06.23 6xnjRD2S.net
URLØÝž(www.uvm.edu)
KUMMER CLASSES AND ANABELIAN GEOMETRY Date: April 29, 2017.
JACKSON S. MORROW
ABSTRACT. These notes comes from the Super QVNTS: Kummer Classes and Anabelian
geometry. Any virtues in the notes are to be credited to the lecturers and not the scribe;
however, all errors and inaccuracies should be attributed to the scribe. That being said,
I apologize in advance for any errors (typo-graphical or mathematical) that I have introduced. Many thanks to Taylor Dupuy, Artur Jackson, and Jeffrey Lagarias for their wonderful insights and remarks during the talks, Christopher Rasmussen, David Zureick-Brown,
and a special thanks to Taylor Dupuy for his immense help with editing these notes. Please
direct any comments to jmorrow4692@gmail.com.
The following topics were not covered during the workshop:
E mono-theta environments
E conjugacy synchronization
E log-shells (4 flavors)
E combinatorial versions of the Grothendieck conjecture
E Hodge theaters
E kappa-coric functions (the number field analog of etale theta) L
E log links
E theta links
E indeterminacies involved in [Moc15a, Corollary 3.12]
E elliptic curves in general position
E explicit log volume computations
CONTENTS
1. On Mochizukifs approach to Diophantine inequalities
Lecturer: Kiran Kedlaya . . 2
2. Why the ABC Conjecture?
Lecturer: Carl Pomerance . 3
3. Kummer classes, cyclotomes, and reconstructions (I/II)
Lecturer: Kirsten Wickelgren . 3
4. Kummer classes, cyclotomes, and reconstructions (II/II)
Lecturer: David Zureick-Brown . 6
5. Overflow session: Kummer classes
Lecturer: Taylor Dupuy . 8
6. Introduction to model Frobenioids
Lecturer: Andrew Obus . 11
7. Theta functions and evaluations
Lecturer: Emmanuel Lepage . . 13
8. Roadmap of proof
Notes from an email from Taylor Dupuy . . 17

114:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 06:06:22.96 tA3B4T+I.net
URLØÝž(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B76 (2019), 79?183
‰F’ˆÛ TeichmNuller —˜_“ü–å
(Introduction to Inter-universal TeichmNuller Theory)
By ¯ —Tˆê˜Y (Yuichiro Hoshi)
P5
˜ 1. ‰~•ª•š
”Šw ‰~•ª•š‚Ƃ͉œ‚Å‚µ‚å‚€‚©. ‚»‚ê‚Í Tate ”P‚è gZb(1)h‚Ì‚±‚Æ‚Å‚·.
(ˆø—pI‚è)
‰~•ª•š‚́A–w‚ǁh‰~•ª‘́h‚È‚Ì‚Å‚µ‚å‚€
‚œ‚ŸAu‘́v‚Å‚Í‚È‚¢‚©‚à’m‚ê‚È‚¢
‚Ÿ‚©‚çAu•šv‚È‚Ì‚©BŒ—˜_“I‚ȁu•šv‚©‚à
iŽQlj
URLØÝž(ja.wikipedia.org)
‰~•ª‘Ì
URLØÝž(en.wikipedia.org)
Cyclotomic field

115:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 06:28:26.45 tA3B4T+I.net
>>114
>Tate ”P‚è
‰º‹LTate twist ‚Ý‚œ‚¢‚Ÿ‚Ë
’A‚µA‰º‹L‚́han operation on Galois modulesh‚Æ‚ ‚é‚Ì‚Å
¯æ¶‚Ì‹Lq‚Æ‚Í‚¿‚å‚Á‚ƈႀ‚æ‚€‚È
‚‚܂èA¯æ¶‚Ì‹Lq‚́Ahan operation h‚Å‚Í‚È‚­A‚»‚ꂪW‚Ü‚Á‚œA—á‚Š‚ÎŒQ‚Ì‚æ‚€‚ȏW‡‚ðˆÓ–¡‚µ‚Ä‚¢‚é‹C‚ª‚·‚é
iŽQlF•¶Žš‰»‚¯‚Í–Ê“|‚Ȃ̂ŏC³‚µ‚Ü‚¹‚ñ‚̂ŁAŒŽ•¶‚²ŽQÆj
URLØÝž(en.wikipedia.org)
Tate twist
In number theory and algebraic geometry, the Tate twist,[1] named after John Tate, is an operation on Galois modules.
For example, if K is a field, GK is its absolute Galois group, and ƒÏ : GK š AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V?Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp(?1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as
{\displaystyle V\otimes \mathbf {Q} _{p}(-1)^{\otimes m}.}{\displaystyle V\otimes \mathbf {Q} _{p}(-1)^{\otimes m}.}
References
[1] 'The Tate Twist', in Lecture Notes in Mathematics', Vol 1604, 1995, Springer, Berlin p.98-102

116:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 06:48:13.60 tA3B4T+I.net
>>115
>Tate twist
‰º‹L‚ªŽQl‚É‚È‚è‚»‚€
“ú–{Œê‚ł́Aˆ³“|“I‚ɏî•ñ—Ê‚ª­‚È‚¢
‚»‚ê‚ƁhWhat is the intuition behind the concept of Tate twists?h‚ÆŽ¿–â‚·‚éŽpš‚ÍŒ©K‚€‚ׂ«‚Å‚µ‚å‚€‚Ë
URLØÝž(math.stackexchange.com)
About the definition of l-adic Tate-twist asked Sep 20 '18 at 6:30 Elvis Torres Perez
(”²ˆ)
Zl(0)=Zl , Zl(1)=lim©?(ƒÊli), Zl(n+1)=Zl(n)?ZlZl(1) for n„0
URLØÝž(math.stackexchange.com)
What is the intuition behind the concept of Tate twists? asked Aug 16 '11 at 4:06 Nicole

117:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 20:32:45.22 tA3B4T+I.net
>>114‚‚«
URLØÝž(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B76 (2019), 79?183
‰F’ˆÛ TeichmNuller —˜_“ü–å
(Introduction to Inter-universal TeichmNuller Theory)
By ¯ —Tˆê˜Y (Yuichiro Hoshi)
P9
˜ 2. ƒtƒƒxƒjƒIƒCƒh‚̉~•ª„«“¯Œ^
ŽŸ‚É, ˆÊ‘ŠŒQì—p•t‚«ƒ‚ƒmƒCƒh Gk ? O?k
‚Ì“¯Œ^•š G ? M ‚ðlŽ@‚µ‚Ü‚µ‚å‚€. ‚±‚Ì
ƒf[ƒ^ G ? M ‚Í, ƒtƒƒxƒjƒIƒCƒh (Frobenioid ? cf. [6], Definition 1.3) ‚ƌĂ΂ê
‚鐔Šw“I‘Ώۂ̂ ‚éˆê—á‚Æ“™‰¿‚ȃf[ƒ^‚Æ‚È‚Á‚Ä‚¢‚Ü‚·. ‚±‚€‚¢‚Á‚œƒtƒƒxƒjƒIƒCƒh (‚Ì
‚ ‚éˆê—á‚Æ“™‰¿‚ȃf[ƒ^@?@ŠÈ’P‚Ì‚œ‚ß, ˆÈ‰º, ‚à‚€‚±‚ê‚ðƒtƒƒxƒjƒIƒCƒh‚ÆŒŸ‚¢Ø‚Á
‚Ä‚µ‚Ü‚¢‚Ü‚·‚ª) ‚ª—^‚Š‚ç‚ê‚œ‚Æ‚«, ‚»‚Ì gGh ‚Ì•”•ª‚ð ƒGƒ^[ƒ‹“I (Letale-like ? cf.,
e.g., [6], Introduction, ˜I4) •”•ª‚ƌĂÑ, ‚»‚µ‚Ä, ‚»‚̏ã, gMh ‚Ì•”•ª‚ð Frobenius “I
(Frobenius-like ? cf., e.g., [6], Introduction, ˜I4) •”•ª‚ƌĂт܂·. (‚±‚̏ꍇ‚Ì) ƒG
ƒ^[ƒ‹“I•”•ª‚Í, ˆÊ‘ŠŒQ‚Å, oŽ©‚Í Galois ŒQ‚Å‚·‚©‚ç, ‚‚܂è, g‘Ώ̐«h ‚Å‚ ‚è, ŠŽŠo‚Æ
‚µ‚Ä‚Í gŽ¿—Ê‚Ì‚È‚¢h, gŽÀ‘Ì‚Ì‚È‚¢h (‚·‚È‚í‚¿, g–²‚Ì‚æ‚€‚ȁh, g‰Œ‘z“I‚ȁh) ‘Ώۂł·. ˆê
•û, (‚±‚̏ꍇ‚Ì) Frobenius “I•”•ª‚Í, ˆÊ‘Šƒ‚ƒmƒCƒh‚Å, oŽ©‚Í“K“–‚Ȑ”‚̏W‚Ü‚è‚Å‚·‚©‚ç,
ŠŽŠo‚Æ‚µ‚Ä‚Í gŽ¿—Ê‚Ì‚ ‚éh, gŽÀ‘Ì‚ðŽ‚Âh (‚·‚È‚í‚¿, gŒ»ŽÀ‚É‘¶Ý‚·‚éh, gŽÀÝ‚·‚éh) ‘Î
Û‚Å‚·.
‚³‚Ä, ã‚Ì‚æ‚€‚ȃtƒƒxƒjƒIƒCƒh G ? M ‚ª—^‚Š‚ç‚ê‚Ü‚·‚Æ, ‚³‚«‚قǏq‚ׂœ‚Æ‚š
‚è, (G ‚Í Gk ‚Ì“¯Œ^•š‚Å‚·‚Ì‚Å) ’P‰“ƒA[ƒxƒ‹Šô‰œŠw“I‚É G ‚©‚ç G ? ƒ©(G) ‚Æ‚¢‚€‰~
•ª•š‚𕜌³/\¬‚·‚邱‚Æ‚ª‚Å‚«‚Ü‚·.
‚‚­

118:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 20:33:07.84 tA3B4T+I.net
>>117
‚‚«
ˆê•û, M ‚Í O?k‚Ì“¯Œ^•š‚Å‚·‚©‚ç, n ”{ŽÊ‘œ‚ÌŠjM[n]def = Ker(n: M š M) ‚Í ƒÊn(k) ‚Ì“¯Œ^•š‚Æ‚È‚è, ‚»‚Ì n ‚ÉŠÖ‚·‚é‹t‹ÉŒÀ‚ðŽæ‚邱‚Æ
‚Å, ƒ©(M)def = lim©?nM[n] ‚Æ‚¢‚€ ƒ©(k) ‚Ì“¯Œ^•š, ‚‚܂è, ‰~•ª•š‚ª“Ÿ‚ç‚ê‚Ü‚·. G ? ƒ©(G)
‚Ì•û‚̓Gƒ^[ƒ‹“I•”•ª‚©‚ç\¬‚µ‚œ‚Ì‚Å gƒGƒ^[ƒ‹“I‰~•ª•šh ‚ƌĂÑ, G ? ƒ©(M) ‚Ì•û
‚Í Frobenius “I•”•ª‚©‚ç\¬‚µ‚œ‚Ì‚Å gFrobenius “I‰~•ª•šh ‚ƌĂԂ±‚Æ‚É‚µ‚Ü‚µ‚å‚€.
‚±‚̍lŽ@‚É‚æ‚è, 1 ‚‚̃tƒƒxƒjƒIƒCƒh G ? M ‚©‚ç, ƒGƒ^[ƒ‹“I‰~•ª•š G ? ƒ©(G) ‚Æ
Frobenius “I‰~•ª•š G ? ƒ©(M) ‚Æ‚¢‚€ 2 ‚‚̉~•ª•š‚ª“Ÿ‚ç‚ê‚Ü‚µ‚œ.
‚±‚Ì (–{—ˆ‚Í‚Ü‚Á‚œ‚­–³ŠÖŒW‚È) 2 ‚‚̉~•ª•š‚ÉŠÖ‚µ‚Ä, ˆÈ‰º‚ÌŽ–ŽÀ‚ª’m‚ç‚ê‚Ä‚¢‚Ü
‚·. ([10], Remark 3.2.1, ‚ðŽQÆ‚­‚Ÿ‚³‚¢.)
G ? M ‚Æ‚¢‚€ƒf[ƒ^‚©‚ç, ŠÖŽè“I‚É, G “¯•Ï‚È“¯Œ^ ƒ©(M)?š ƒ©(G) ?@‚‚Ü
‚è, Frobenius “I‰~•ª•š‚ƃGƒ^[ƒ‹“I‰~•ª•š‚Ƃ̊Ԃ̉~•ª„«“¯Œ^@?@‚ð\¬
‚·‚邱‚Æ‚ª‚Å‚«‚é. ‚Ü‚œ, ‚±‚̉~•ª„«“¯Œ^‚Í, G ? M ‚ª gŠÂ˜_“I‚Ȑݒèh ‚©‚ç
¶‚¶‚Ä‚¢‚éê‡‚É‚Í, ]—ˆ‚̉~•ª•š‚ÌŠÔ‚Ì“¯ˆêŽ‹‚ƈê’v‚·‚é.
‚±‚±‚É“oê‚·‚é‰~•ª„«“¯Œ^‚Í, ‚µ‚΂µ‚Î g‹ÇŠ—ޑ̘_‚ð—p‚¢‚œ‰~•ª„«“¯Œ^h, ‚ ‚é‚¢‚Í,
gŒÃ“T“I‚ȉ~•ª„«“¯Œ^h ‚ȂǂƌĂ΂ê‚Ä‚¢‚Ü‚·.
(ˆø—pI‚è)

119:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 20:47:40.66 tA3B4T+I.net
URLØÝž(www.math.nagoya-u.ac.jp)
‚Q‚O‚O‚P”N“xu‹`“à—e—v–ñ
—Šw•””—Šw‰È
‘œŒ³”—‰ÈŠwŒ€‹†‰È
‘åŠw‰@
”˜_“Á•Êu‹` II –]ŒŽ Vˆêi‹ž“s‘åŠwj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
i11 ŒŽ 19 “ú`23 “új u‘ȉ~‹Èü‚Ì Hodge-Arakelov —˜_‚É‚š‚¯‚鉓ƒA[ƒxƒ‹Šô‰œv
P278
‰È–Ú–Œ ”˜_“Á•Êu‹` II ’S“–‹³Š¯@–]ŒŽ Vˆê
ƒTƒuƒ^ƒCƒgƒ‹@ ‘ȉ~‹Èü‚Ì Hodge-Arakelov —˜_‚É‚š‚¯‚鉓ƒA[ƒxƒ‹Šô‰œ
‘Ώۊw”N ‘åŠw‰@ ‚Q’PˆÊ ‘I‘ð
‹³‰È‘ ‚È‚µ
ŽQl‘ Œãq‚́uŽQl•¶Œ£vŽQÆ
—\”õ’mŽ¯
[Hh] ’ö“x‚̃XƒL[ƒ€˜_‚ƁC[Mn] “™‚ɉðà‚µ‚Ä‚ ‚éƒGƒ^[ƒ‹EƒTƒCƒg‚â‘㐔“IŠî–{ŒQ‚ÌŠî‘bD
[Hh] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag (1977).
[Mn] J. S. Milne, Etale Cohomology L , Princeton Mathematical Series 33, Princeton University Press (1980).
‚‚­

120:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 20:47:58.33 tA3B4T+I.net
‚‚«
u‹`“à—e
Grothendieck ‚́u‰“ƒA[ƒxƒ‹“NŠwv‚Ƃ́C”‘Ì‚Ì‚æ‚€‚Ȑ”˜_“I‚ȑ̂̏ã‚Å’è‹`‚³‚êC‚©‚‚ ‚éŠô‰œ“I‚È
ðŒ‚ð–ž‚œ‚·‘㐔‘œ—l‘Ì‚ÌŠô‰œ‚́C‚»‚́u”˜_“IŠî–{ŒQv‚É’‰ŽÀ‚É”œ‰f‚³‚ê‚é‚Å‚ ‚ë‚€‚Æ‚¢‚€l‚Š•û‚ðo”­
“_‚Æ‚µ‚œ”˜_Šô‰œ‚ɑ΂·‚éV‚µ‚¢ƒAƒvƒ[ƒ`‚Å‚ ‚éD‚±‚́u“NŠwv‚Í‚P‚X‚W‚O”N‘㏉“ªCGrothendieck ‚É
‚æ‚Á‚Ä’ñˆÄ‚³‚ê‚œ‚ªCŽÀ‚́C‚»‚̃‹[ƒc‚Í‚»‚êˆÈ‘O‚ɑ㐔“I®”˜_‚ÌŠÏ“_‚©‚ç”­Œ©‚³‚ê‚Ä‚¢‚œ Neukirch-“à
“c‚̒藝‚É‚Ü‚Å‘k‚éDX‚ɁC‚P‚X‚X‚O”N‘ã‚É“ü‚Á‚Ä‚©‚çC‰“ƒA[ƒxƒ‹Šô‰œ‚ł͐V‚µ‚¢Œ‹‰Ê‚ªŽŸX‚Æ“Ÿ‚ç‚ê
(ŽQl•¶Œ£‚Ì [12], [19] ‚ðŽQÆ)CGrothendieck ‚ª—§‚Ä‚œŽå‚È—\‘z‚̈ꕔ‚ªC‚©‚È‚è‹­‚¢Œ`‚ōm’è“I‚É‰ðŒˆ‚³
‚ê‚œD–{u‹`‚ł́C‰“ƒA[ƒxƒ‹Šô‰œ‚Ì survey “I‚ȏЉî‚ð–Ú•W‚̈ê‚‚Ƃ·‚邪C‚œ‚Ÿ‚Ì’ŠÛ“I‚Ȓ藝ŒQ‚Æ‚µ
‚Ĉµ‚€‚Ì‚Å‚Í‚È‚­CÅ‹ß‚É‚È‚Á‚Ä–Ÿ‚ç‚©‚É‚È‚Á‚œC‘ȉ~‹Èü‚Ì Hodge-Arakelov —˜_‚Æ‚ÌŠÖŒW‚É’–Ú‚µ‚È‚ª
‚ç˜b‚ði‚ß‚Ä‚¢‚­D‚±‚ÌŠÖŒW‚ªŽŠŽ‚·‚鉓ƒA[ƒxƒ‹Šô‰œ‚̐V‚µ‚¢‰ðŽß‚É‚æ‚Á‚āC“–‰‚Ì Grothendieck ‚ÌŠú
‘Ò‚Å‚à‚ ‚Á‚œCDiophantus Šô‰œ‚ւ̉ž—p‚̉”\«‚ªŠJ‚¯‚Ä‚­‚é‚à‚Ì‚ÆŽv‚í‚ê‚éD
IF ‰“ƒA[ƒxƒ‹Šô‰œ“ü–å ˜1. ‘㐔“IŠî–{ŒQ‚Ƃ͉œ‚©H ˜2. Grothendieck ‚Ì anabelian “NŠw ˜3. ‰“ƒA[
ƒxƒ‹Šô‰œ‚Ì‘ã•\“I‚Ȓ藝 ˜4. ‹ÇŠ‘̂̉“ƒA[ƒxƒ‹«
IIF Hodge-Arakelov —˜_“ü–å ˜1. Šî–{’藝 ˜2. –³ŒÀ‰““_‚Å‚Ìó‹µ ˜3. ³•W”“IŽè–@‚É‚æ‚éØ–Ÿ
IIIF basepoint, core, commensurator ‚̘b ˜1. anabelioid ‚Æ‚¢‚€‚à‚Ì ˜2. core ˜3. ³‘¥\‘¢ ˜4. ’Ê
–ñ’[––« ˜5. global multiplicative subspace ‚ւ̃iƒC[ƒ”‚ȃAƒvƒ[ƒ`
IVF universe, “¯Šú‰» ˜1. “Æ—§‚ȉF’ˆ‚Ì“±“ü ˜2. ”Œ‘ȉ~ orbicurve ‚Ì’Ê–ñ’[––« ˜3. –³ŒÀ‰““_‚É‚š‚¯
‚é’Ê–ñ’[––« ˜4. ³‘¥‹ÇŠ‰»‚ÌŒ— ˜5. ŽåŒ‹‰Ê
u‹`‚ÌŠŽ‘z
u‹`‚̍Œ†C‹³Š¯‚Ÿ‚¯‚Å‚È‚­C‰œ‰ñ‚É‚à‚í‚œ‚èCŠw¶‚Ì•û‚©‚ç‚à”ñí‚É—LˆÓ‹`‚ÈŽ¿–â‚âŽw“E‚ªo‚³‚êCu
‹`‘S‘Ì‚ÌŽ¿‚É‘å‚«‚­Šñ—^‚µ‚œ‚±‚Ƃ́CˆóÛ“I‚Å‚µ‚œD
(ˆø—pI‚è)
ˆÈã

121:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 23:15:45.59 tA3B4T+I.net
‰F’ˆAinter-universal
URLØÝž(www.kurims.kyoto-u.ac.jp)(Muroran%202002-08).pdf
Anabelioid ‚ÌŠô‰œŠw‚Æ Teichmuller —˜_ –]ŒŽ Vˆê (‹ž“s‘åŠw”—‰ðÍŒ€‹†Š) 2002”N8ŒŽ
(”²ˆ)
˜1. pi‘o‹È‹Èü‚𑌉F’ˆ‚©‚猩‚é
‰äX‚ª’ʏíŽg—p‚µ‚Ä‚¢‚éAƒXƒL[ƒ€‚È‚Ç‚Ì‚æ‚€‚ȏW‡˜_“I‚Ȑ”Šw“I‘Ώۂ́AŽÀ‚́A‹c˜_‚ðŠJŽn‚µ‚œÛ‚ɍ̗p‚³‚ê‚œuW‡˜_vA‚‚܂èA‚ ‚é Grothendieck ‰F’ˆ‚Ì‘I‘ð‚É–{Ž¿“I‚Ɉˑ¶‚µ‚Ä‚¢‚é‚Ì‚Å‚ ‚éB‚±‚́u1‚‚̏W‡˜_v‚̗̍p‚́A‚à‚Á‚Æ‹ï‘Ì“I‚É‚¢‚€‚ƁA
u‚ ‚郉ƒxƒ‹(=‹c˜_‚É“oê‚·‚éW‡‚â‚»‚ÌŒ³‚Ì–Œ‘O)‚̃ŠƒXƒg‚Ì‘I‘ðv
‚ÆŒ©‚邱‚Æ‚à‚Å‚«‚éB‚·‚é‚ƁAŽŸ‚Ì‚æ‚€‚È–â‚¢Š|‚¯‚ª¶‚¶‚é:
–â: ƒXƒL[ƒ€‚Ì‚æ‚€‚ȏW‡˜_“IŠô‰œ“I‘Ώۂð•Ê‚̏W‡˜_“I‰F’ˆ‚©‚猩‚œ‚çA
‚‚܂èA‚œ‚Ü‚œ‚܍̗p‚µ‚œƒ‰ƒxƒ‹‚œ‚¿‚ðŽæ‚èã‚°‚Ä‚Ý‚œ‚çA‚»‚ÌŠô‰œ“I‘Ώۂ͂ǂ̂悀‚ÉŒ©‚Š‚é‚©?
‚‚­

122:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/05 23:16:04.54 tA3B4T+I.net
>>121
‚‚«
‚±‚Ì‚æ‚€‚ɁA‰F’ˆ‚ðŽæ‚è‘Ö‚Š‚œ‚è‚·‚é‚æ‚€‚ȍì‹Æ‚ðs‚È‚€ÛA•Ê‚̉F’ˆ‚É‚à’Ê‚¶‚鐔Šw“I‘ÎÛ‚ðˆµ‚€‚æ‚€‚É‚µ‚È‚¢‚ƁA‹c˜_‚͈Ӗ¡‚𐬂³‚È‚­‚Ȃ邪A(–{e‚ł͏ȗª‚·‚邪)—lX‚È——R‚É‚æ‚Á‚āAŒ—‚́A‚»‚Ì‚æ‚€‚Ȑ«Ž¿‚ð–ž‚œ‚·Bˆê”ʂɁAˆá‚€‰F’ˆ‚É‚à’Ê‚¶‚é‚à‚Ì‚ðinter-universal ‚ƌĂԂ±‚Æ‚É‚·‚邪AuŒ—v‚Æ‚¢‚€‚à‚̂́AÅ‚àŠî–{“I‚©‚ÂŒŽŽn“I‚È inter-universal ‚Ȑ”Šw“I‘ΏۂƂ¢‚€‚±‚Æ‚É‚È‚éB
‚³‚āAƒXƒL[ƒ€‚𑌉F’ˆ‚©‚猩‚œ‚ç‚Ç‚ñ‚È•—‚ÉŒ©‚Š‚é‚©A‚Æ‚¢‚€–â‚¢‚É“š‚Š‚é‚œ‚߂ɂ́AƒXƒL[ƒ€‚ðAinter-universal ‚É•\Œ»‚·‚é•K—v‚ª‚ ‚éB‚±‚ê‚É‚Í—lX‚ÈŽè–@‚ª‚ ‚邪A–{e‚ł́AŽŸ‚Ì‚à‚Ì‚ðŽæ‚èã‚°‚é(•Ê‚̎荠‚È—á‚ɂ‚¢‚ẮAuMzk7] ‚ðŽQÆ):
Et(X) {X‚Ì—LŒÀŽŸƒGƒ^[ƒ‹”í•¢‚ÌŒ— }
(‚œ‚Ÿ‚µAX ‚́A˜AŒ‹‚ȃl[ƒ^EƒXƒL[ƒ€‚Æ‚·‚éB) •›—LŒÀŒQ G ‚ɑ΂µ‚Ä B(G) ‚ðAG ‚̘A‘±‚ȍì—p‚ð‚à‚—LŒÀW‡‚ÌŒ—A‚Æ‚¢‚€‚Ó‚€‚É’è‹`‚·‚é‚ƁAEt(X) ‚Æ‚¢‚€Œ—‚́AB(mƒ…(X)) (‚œ‚Ÿ‚µA(X) ‚́AX‚̑㐔“IŠî–{ŒQ‚Æ‚·‚é)‚Æ“¯’l‚É‚È‚éB
‚±‚±‚ł́AB(G) ‚ðA1‚‚̊ô‰œ“I‘ΏۂƂ݂ȂµAanabelioid ‚ƌĂԂ±‚Æ‚É‚·‚éBŽÀ‚́AB(G) ‚́Au˜AŒ‹‚È anabelioidv‚ɂȂ邪Aˆê”ʂɂ́A•¡”‚̘AŒ‹¬•ª‚ð‚à‚Âanabelioid ‚ðˆµ‚€‚±‚Æ‚à‚ ‚é(Ú‚µ‚­‚́AuMzk8] ‚ðŽQÆ)Banabelioid ‚Ì—˜_‚Ì‘å‚«‚ȃe[ƒ}‚̈ê‚‚́A’ʏíƒXƒL[ƒ€‚ɑ΂µ‚čs‚È‚€‚æ‚€‚È—lX‚ÈŠô‰œ“I‘€ì‚ðA(Et(X)‚Ì‚æ‚€‚ɃXƒL[ƒ€‚©‚琶‚¶‚œ‚à‚Ì‚©‚Ç‚€‚©‚Æ‚ÍŠÖŒW‚È‚­) anabelioid ‚݂̂̐¢ŠE‚É
‚š‚¢‚Ä‚¢‚í‚΁gnative' ‚ɍs‚È‚€‚±‚Æ‚Å‚ ‚éB‚±‚̃e[ƒ}‚̍łàŠî–{“I‚È—á‚̈ê‚‚́A—LŒÀŽŸ ƒGƒ^[ƒ‹”í•¢‚Ì’è‹`‚Å‚ ‚éB˜AŒ‹‚È anabelioid ŠÔ‚Ì—LŒÀŽŸƒGƒ^[ƒ‹”í•¢‚́A
B(H) š B(G)
(‚œ‚Ÿ‚µAG ‚Í•›—LŒÀŒQAH ‚Í‚»‚ÌŠJ•”•ªŒQB‚È‚šuŽËv‚ÍŒ—‚ÌŠÔ‚ÌŠÖŽè‚Æ‹tŒü‚«‚ɏ‘‚­B)‚Æ“¯Œ^‚ÈŽË‚Æ‚µ‚Ä’è‹`‚³‚ê‚éB
(ˆø—pI‚è)
ˆÈã

123:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/06 07:31:37.30 TlVKjijJ.net
>>122
u‚±‚±‚ł́AB(G) ‚ðA1‚‚̊ô‰œ“I‘ΏۂƂ݂ȂµAanabelioid ‚ƌĂԂ±‚Æ‚É‚·‚évi‰º‹Lj
(ˆø—pŠJŽn)
‚±‚±‚ł́AB(G) ‚ðA1‚‚̊ô‰œ“I‘ΏۂƂ݂ȂµAanabelioid ‚ƌĂԂ±‚Æ‚É‚·‚éBŽÀ‚́AB(G) ‚́Au˜AŒ‹‚È anabelioidv‚ɂȂ邪Aˆê”ʂɂ́A•¡”‚̘AŒ‹¬•ª‚ð‚à‚Âanabelioid ‚ðˆµ‚€‚±‚Æ‚à‚ ‚é(Ú‚µ‚­‚́AuMzk8] ‚ðŽQÆ)Banabelioid ‚Ì—˜_‚Ì‘å‚«‚ȃe[ƒ}‚̈ê‚‚́A’ʏíƒXƒL[ƒ€‚ɑ΂µ‚čs‚È‚€‚æ‚€‚È—lX‚ÈŠô‰œ“I‘€ì‚ðA(Et(X)‚Ì‚æ‚€‚ɃXƒL[ƒ€‚©‚琶‚¶‚œ‚à‚Ì‚©‚Ç‚€‚©‚Æ‚ÍŠÖŒW‚È‚­) anabelioid ‚݂̂̐¢ŠE‚É
‚š‚¢‚Ä‚¢‚í‚΁gnative' ‚ɍs‚È‚€‚±‚Æ‚Å‚ ‚éB‚±‚̃e[ƒ}‚̍łàŠî–{“I‚È—á‚̈ê‚‚́A—LŒÀŽŸ ƒGƒ^[ƒ‹”í•¢‚Ì’è‹`‚Å‚ ‚éB˜AŒ‹‚È anabelioid ŠÔ‚Ì—LŒÀŽŸƒGƒ^[ƒ‹”í•¢‚́A
B(H) š B(G)
(‚œ‚Ÿ‚µAG ‚Í•›—LŒÀŒQAH ‚Í‚»‚ÌŠJ•”•ªŒQB‚È‚šuŽËv‚ÍŒ—‚ÌŠÔ‚ÌŠÖŽè‚Æ‹tŒü‚«‚ɏ‘‚­B)‚Æ“¯Œ^‚ÈŽË‚Æ‚µ‚Ä’è‹`‚³‚ê‚éB
(ˆø—pI‚è)

124:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/06 23:41:10.99 TlVKjijJ.net
URLØÝž(www.kurims.kyoto-u.ac.jp)
–]ŒŽ ˜_•¶
@u‰‰‚̃AƒuƒXƒgƒ‰ƒNƒgEƒŒƒNƒ`ƒƒ[ƒm[ƒg
URLØÝž(www.kurims.kyoto-u.ac.jp)(Meijidai%202002-03).pdf
Anabelioid‚ÌŠô‰œŠw 2002”N3ŒŽ
Page 1
‚±‚±‚ÅŒŸØ‚·‚é–â‘è‚Í:‘Oq‚Ì e‹ÇŠ“I‚ȏæ–@“I•”•ª‰ÁŒQf ‚ðA e‘åˆæ“I‚ȏæ–@“I•”•ª‰ÁŒQf ‚Æ‚µ‚Ä F ‘S‘̂ɉ„’·‚·‚邱‚Æ‚Í‚Å‚«‚È‚¢‚©?‚Æ‚¢‚£‚±‚Æ‚Å‚ ‚é
‚±‚Ì–â‘è‚ðŽ•ž‚·‚é‚œ‚߂ɂ́AŽ‹“_‚𔲖{“I‚É•Ï‚Š‚Ä‚Ý‚é•K—v‚ª‚ ‚é? Œ‹˜_‚©‚ç‚¢‚£‚ƁA e³‚µ‚¢Ž‹“_f ‚ÍŽŸ‚Ì“à—e‚©‚ç‚È‚Á‚Ä‚¢‚é:(i) ‘åˆæ“I‚ȏæ–@“I•”•ªŒQƒXƒL?ƒ€‚ðAŒ³X‚̍ì‹Æ‚̏ê‚Æ‚µ‚Ä‚¢‚œW‡˜_“I‚È e‰F’ˆf ‚É‚š‚¢‚č\¬‚·‚邱‚Æ‚ð‚ЂƂ܂ž’ú‚߁A‘S‚­•Ê‚́A“Æ—§‚ȉF’ˆ‚É‚š‚¯‚éAŒ³‚̑Ώۂœ‚¿ E, F, K “™‚Ì ?ƒs? Ec, Fc, Kc ‚ɑ΂·‚éæ–@“I•”•ªŒQƒXƒL?ƒ€‚̍\¬‚ð–ÚŽw‚·?(ii) Œ³X‚̉F’ˆ‚Ì K ‚́A pF ‚̏ã‚Ì‘f“_‚œ‚¿ pK ‚ðAV‚µ‚¢‰F’ˆ‚Ì Kc ‚Ì base-point ‚ð parametrize ‚·‚é‚à‚Ì‚ÆŒ©‚é?‚‚܂èA?ŒŸ‚Å‚¢‚£‚ƁA K ‚Ì basepoint ‚ð“®‚©‚·‚±‚Æ‚ªAŠÌS‚Å‚ ‚é?“®‚©‚·‚±‚Æ‚É‚æ‚Á‚āAŒ³‚̉F’ˆ‚É‚š‚¯‚é LK ‚ƐV‚µ‚¢‰F’ˆ‚Ì (LK)c ‚̊Ԃ́A‘Š‘ΓI‚Ȉʒu‚ªˆÚ“®‚·‚邱‚Æ‚Æ‚È‚èAŽ|‚­‚»‚̑Ήž‚·‚éˆÚ“®‚ðÝ’è‚·‚邱‚Æ‚É‚æ‚Á‚āA?pK ‚ª•\‚µ‚Ä‚¢‚é Kc ‚Ì basepoint ‚©‚çA LK ‚ɑΉž‚·‚é (LK)c ‚ð’­‚ß‚Ä‚Ý‚é‚ƁA‚»‚Ì (LK)c ‚́A?Í pK ‚ɑ΂µ‚Ä) í‚ɏæ–@“I‚É‚È‚é?v‚Æ‚¢‚£?Œ©??ŒÃ“T“I‚È—˜_‚̏펯‚©‚炵‚Ä)•sŽv‹c‚È‚ª‚ç‚àAŽÀ‚́A‚ ‚éˆÓ–¡‚Å‚Í?“¯‹`”œ•œ“Iv‚ȏ󋵂ðŽÀŒ»‚·‚邱‚Æ‚ª‚Å‚«‚é
‚‚­

125:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/06 23:41:35.13 TlVKjijJ.net
>>124
‚‚«
˜2. anabelioid ‚Æ core
Anabelioid ????–]ŒŽV? ?‹ž“s‘åŠw”—‰ðÍŒ€‹†Š)2002”N3ŒŽ˜1. V‹Zp“±“ü‚Ì“®‹@˜2. anabelioid ‚Æ core˜3. ”˜_“I‚È anabelioid ‚̗ၘ1. V‹Zp“±“ü‚Ì“®‹@F ‚𐔑̂ƂµA E ‚ð‚»‚Ìã‚̑ȉ~‹Èü‚Æ‚·‚é?‘f” l ? 3 ‚ɑ΂µAŠÈ’P‚Ì‚œ‚߁ASpec(F) ã‚́A l “™•ª“_‚É‚æ‚éŒQƒXƒL?ƒ€ E[l] ‚©‚ç’è‚Ü‚éƒKƒƒA•\Œ»GFdef= Gal(F /F) š GL2(Fl)‚ª‘SŽË‚ƂȂ邱‚Æ‚ð‰Œ’è‚·‚é?ŽŸ‚ɁA E ‚ª bad, multiplicative reduction ‚ðŽ‚Â?”‘Ì F ‚Ì)‘f“_ pF ‚ðl‚Š‚é? F ‚ð pF ‚ÅŠ®”õ‰»‚µ‚Ä“Ÿ‚ç‚ê‚é‘Ì‚ð FpF ‚Ə‘‚­‚Æ‚·‚é‚ƁA FpF ‚̏ã‚ł͑ȉ~‹ÈüEFpFdef= E ?F FpF‚Ì eTate curvef ‚Æ‚µ‚Ä‚Ì•\ŽŠ eGm/qZf ‚æ‚è’è‚Ü‚éA canonical ‚ȁeæ–@“I‚ȁf •”•ªŒQƒXƒL?ƒ€ƒÊl º E[l]|FpF‚ª‚ ‚é?‚±‚±‚ÅŒŸØ‚·‚é–â‘è‚Í:‘Oq‚Ì e‹ÇŠ“I‚ȏæ–@“I•”•ª‰ÁŒQf ‚ðA e‘åˆæ“I‚ȏæ–@“I•”•ª‰ÁŒQf ‚Æ‚µ‚Ä F ‘S‘̂ɉ„’·‚·‚邱‚Æ‚Í‚Å‚«‚È‚¢‚©?‚Æ‚¢‚£‚±‚Æ‚Å‚ ‚é?‚»‚Ì‚æ‚£‚ȉ„’·‚ðˆÀ’Œ‚ȃAƒvƒ?ƒ`‚ōì‚ë‚£‚Æ‚·‚é‚ƁA’Œ‚¿‚É–{Ž¿“I‚ȏáŠQ‚É‚Ô‚¿“–‚œ‚é?—á‚Š‚΁A K def= F(E[l]) ‚ð l “™•ª“_‚œ‚¿‚́A F ã‚̍ŏ¬’è‹`‘Ì‚Æ‚µA K ‚܂ŏオ‚Á‚čì‹Æ‚µ‚Ä‚Ý‚é‚Æ‚·‚é?‚·‚é‚ƁA E[l]|K ‚Ì•”•ªŒQƒXƒL?ƒ€‚Æ‚µ‚āA eƒÊlf ‚ð K ‘S‘̂̏ã‚Å’è‹`‚³‚ê‚é‚à‚ÌLK º E[l]|K‚ɐL‚΂·‚±‚Æ‚ª‚Å‚«‚邪A‚»‚Ì LK ‚́A
‚‚­

126:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/06 23:43:55.67 TlVKjijJ.net
>>125
‚‚«
K ‚Ì–w‚ñ‚Ç‚Ì bad, multiplicative reduction ‚Ì‘f“_ pK ‚É‚š‚¢‚ẮA‚»‚Ì‘f“_‚É‚š‚¯‚é‹ÇŠ—˜_‚©‚琶‚¶‚é eæ–@“I‚È•”•ªŒQƒXƒL?ƒ€f ‚Æ ?’v‚µ‚È‚¢?‚±‚Ì–â‘è‚ðŽ•ž‚·‚é‚œ‚߂ɂ́AŽ‹“_‚𔲖{“I‚É•Ï‚Š‚Ä‚Ý‚é•K—v‚ª‚ ‚é? Œ‹˜_‚©‚ç‚¢‚£‚ƁA
e³‚µ‚¢Ž‹“_f ‚ÍŽŸ‚Ì“à—e‚©‚ç‚È‚Á‚Ä‚¢‚é:
(i) ‘åˆæ“I‚ȏæ–@“I•”•ªŒQƒXƒL?ƒ€‚ðAŒ³X‚̍ì‹Æ‚̏ê‚Æ‚µ‚Ä‚¢‚œW‡˜_“I‚È e‰F’ˆf ‚É‚š‚¢‚č\¬‚·‚邱‚Æ‚ð‚ЂƂ܂ž’ú‚߁A‘S‚­•Ê‚́A“Æ—§‚ȉF’ˆ‚É‚š‚¯‚éAŒ³‚̑Ώۂœ‚¿ E, F, K “™‚Ì ?ƒs? Ec, Fc, Kc ‚ɑ΂·‚éæ–@“I•”•ªŒQƒXƒL?ƒ€‚̍\¬‚ð–ÚŽw‚·?
(ii) Œ³X‚̉F’ˆ‚Ì K ‚́A pF ‚̏ã‚Ì‘f“_‚œ‚¿ pK ‚ðAV‚µ‚¢‰F’ˆ‚Ì Kc ‚Ì base-point ‚ð parametrize ‚·‚é‚à‚Ì‚ÆŒ©‚é?‚‚܂èA?ŒŸ‚Å‚¢‚£‚ƁA K ‚Ì basepoint ‚ð“®‚©‚·‚±‚Æ‚ªAŠÌS‚Å‚ ‚é?“®‚©‚·‚±‚Æ‚É‚æ‚Á‚āAŒ³‚̉F’ˆ‚É‚š‚¯‚é LK ‚ƐV‚µ‚¢‰F’ˆ‚Ì (LK)c ‚̊Ԃ́A‘Š‘ΓI‚Ȉʒu‚ªˆÚ“®‚·‚邱‚Æ‚Æ‚È‚èAŽ|‚­‚»‚̑Ήž‚·‚éˆÚ“®‚ðÝ’è‚·‚邱‚Æ‚É‚æ‚Á‚āA?pK ‚ª•\‚µ‚Ä‚¢‚é Kc ‚Ì basepoint ‚©‚çA LK ‚ɑΉž‚·‚é (LK)c ‚ð’­‚ß‚Ä‚Ý‚é‚ƁA‚»‚Ì (LK)c ‚́A?Í pK ‚ɑ΂µ‚Ä) í‚ɏæ–@“I‚É‚È‚é?v‚Æ‚¢‚£?Œ©??ŒÃ“T“I‚È—˜_‚̏펯‚©‚炵‚Ä)•sŽv‹c‚È‚ª‚ç‚àA
ŽÀ‚́A‚ ‚éˆÓ–¡‚Å‚Í?“¯‹`”œ•œ“Iv‚ȏ󋵂ðŽÀŒ»‚·‚邱‚Æ‚ª‚Å‚«‚é?˜2. anabelioid ‚Æ coreˆÈã‚Ì‹c˜_‚Í“NŠw“I‚È—v‘f‚àŠÜ‚ñ‚Å‚¢‚邪A‚±‚ê‚ðŒµ–§‚Ȑ”Šw‚Æ‚µ‚ďˆ—‚·‚é‚œ‚߂ɂ́AV‚µ‚¢‹Zp‚Ì“±“ü‚ª•K—v‚Æ‚È‚é?‚±‚̏ꍇA’†S‚Æ‚È‚éV‹Zp‚́A eanabelioidf‚Ì—˜_‚Å‚ ‚é?eanabelioidf ‚Ƃ́A˜1 ‚Ì‹c˜_‚ðs‚È‚£Û‚É—p‚¢‚È‚¯‚ê‚΂Ȃç‚È‚¢Šô‰œ“I‚ȑΏۂ̂±‚Æ‚Å‚ ‚é?‚±‚ÌŠô‰œ“I‘Ώۂ́AƒXƒL?ƒ€‚ƈႢA toposA‘Š‚¿@Œ—@‚Å‚ ‚é‚œ‚߁A an-abelioid ‘S‘Ì‚Ì eŒ—f ‚Æ‚¢‚£‚à‚̂́A 2-category ‚É‚È‚Á‚Ä‚µ‚Ü‚£?˜AŒ‹‚È‚Æ‚«‚́A anabe-lioid ‚Í [SGA1] ‚É“oê‚·‚é eGalois categoryf ‚Æ‚¢‚£A¡‚Å‚Í40”NˆÈã‚Ì—ðŽj‚ðŽ‚Â“éõ‚ݐ[‚¢‚à‚Ì‚Æ“¯‚¶‚Å‚ ‚é?‚‚܂èA˜AŒ‹‚È anabelioid ‚́AÎ•›—LŒÀŒQ G ‚ɑ΂µ‚ÄB(G)def= {G ‚̘A‘±‚ȍì—p•t‚«‚Ì—LŒÀW‡‚œ‚¿‚ª‚È‚·Œ—‚Æ“¯’l‚ÈŒ—‚Ì‚±‚Æ‚Å‚ ‚é?
(ˆø—pI‚è)
ˆÈã

127:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/08 20:20:58.92 Q70nFO4E.net
URLØÝž(www.kurims.kyoto-u.ac.jp)
–]ŒŽ ˜_•¶
@u‰‰‚̃AƒuƒXƒgƒ‰ƒNƒgEƒŒƒNƒ`ƒƒ[ƒm[ƒg
URLØÝž(www.kurims.kyoto-u.ac.jp)
”‘̂ƈʑŠ‹È–Ê‚É‹€’Ê‚·‚éu“ñŽŸŒ³‚ÌŒQ˜_“IŠô‰œvi2012”N8ŒŽ‚ÌŒöŠJuÀj
(”²ˆ)
—v–ñ
—L—”‘ÌQ‚Ì‚æ‚€‚ȁu”‘́v‚ƁA•¡”‚̃h[ƒiƒc‚Ì•\–Ê‚ð‡‘Ì‚³‚¹‚œ‚æ‚€‚ÈŒ`‚ð‚µ‚œƒR
ƒ“ƒpƒNƒg‚ȁuˆÊ‘Š‹È–ʁv‚Í-ˆêŒ©‚µ‚Ä‘S‚­ˆÙŽ¿‚Ȑ”Šw“I‘Ώۂł ‚èA‰“™“I‚ȉŠ·ŠÂ—@A‚Â
‚Ü‚èAu‰ÁŒžæœv‚ª‰Â”\‚Ȑ”Šw“I‘ΏۂƂµ‚Ă̍\‘¢‚Ì—˜_‚©‚猩‚Ä‚à’ŒÚ“I‚ÉŠÖ˜A•t‚¯‚é
‚±‚Ƃ͓‚¢B‚µ‚©‚µ”‘Ì‚ÌŠg‘å‘̂̑Ώ̐«‚ð‹Lq‚·‚éuâ‘΃KƒƒAŒQv‚ƁAƒRƒ“ƒpƒNƒg
‚ȈʑŠ‹È–Ê‚Ì—LŒÀŽŸ‚̔핢‚̑Ώ̐«‚𓝐§‚·‚éu•›—LŒÀŠî–{ŒQv‚ð’Ê‚µ‚Ä—ŒŽÒ‚ð‰ü‚ß‚Ä’­
‚ß‚Ä‚Ý‚é‚ƁAu“ñŽŸŒ³“I‚ÈŒQ˜_“I—‚܂荇‚¢v‚Æ‚¢‚€Œ`‚Å‘å•Ï‚É‹»–¡[‚¢\‘¢“I‚È—ÞŽ—«
‚ª•‚‚©‚яオ‚Á‚Ä‚­‚éB–{e‚Å‚Í—lX‚È‘€–Ê‚É‚š‚¯‚邱‚ÌŽí‚Ì—ÞŽ—«‚ɏœ_‚ð“–‚Ä‚È‚ª‚çA
”‘̂ƈʑŠ‹È–Ê‚ÌŠî‘b“I‚È—˜_‚ɂ‚¢‚ĉðà‚·‚éB
˜4D ” ‚ƈʑŠ‹È–ʂ́u—‚܂荇‚¢‚ÌŒ»êv”‘̏ã‚̑㐔‹Èü
‚‚­

128:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/08 20:21:23.67 Q70nFO4E.net
>>127
‚‚«
˜4.2D•›—LŒÀŠî–{ŒQ‚ւ̐â‘΃KƒƒAŒQ‚Ì’‰ŽÀ‚ÈŠOì—p
“¯Ží‚́u’PŽË«v‚ÉŠÖ‚·‚é’藝‚́AuŒŠ‚ªŠJ‚¢‚Ä‚¢‚évuƒRƒ“ƒpƒNƒg‚Å‚È‚¢v‘o‹È“I
‘㐔‹Èü‚̏ꍇ‚ɂ́AŠù‚É(Mtml‚ŏؖŸ‚³‚ê‚Ä‚¢‚āA[Mtml‚àIHMI‚àAˆê”ԍŏ‰‚ÉBelyi
Ž‚É‚æ‚Á‚Ä”­Œ©‚³‚ê‚œAŽË‰e’ŒüP1‚©‚çŽO“_‚𔲂¢‚Ä“Ÿ‚ç‚ê‚é‘o‹È“I‹Èü‚̏ꍇ‚Ì’PŽË
«‚É‹A’…‚³‚¹‚邱‚Æ‚É‚æ‚Á‚Ä‚æ‚èˆê”Ê“I‚È‘o‹È“I‘㐔‹Èü‚̏ꍇ‚Ì’PŽË«‚ðØ–Ÿ‚µ‚Ä‚¢‚éB
ˆê•ûAã‹L‚̒藝‚Ì‚æ‚€‚ɃRƒ“ƒpƒNƒg‚È‘o‹È“I‘㐔‹Èü‚̏ꍇ‚É‚±‚ÌŽí‚Ì’PŽË«‚ðŽŠ‚·‚±
‚Ƃ̈Ӌ`‚́A˜3.2‹y‚с˜3.3‚ʼnðà‚µ‚œ‚æ‚€‚ɁA
ƒRƒ“ƒpƒNƒg‚Ȏ퐔9‚̈ʑŠ‹È–ʂƐ”‘̂̐â‘΃KƒƒAŒQ‚ɂ́A
u“ñŽŸŒ³“I‚ÈŒQ˜_“I—‚܂荇‚¢v‚Æ‚¢‚€
[‚¢\‘¢“I—ÞŽ—«‚ª‚ ‚èA‚»‚Ì‚æ‚€‚È—ÞŽ—«‚ðŽ‚ÂAˆêŒ©‘S‚­ˆÙŽ¿‚È
”˜_“I‚ȑΏۂƈʑŠŠô‰œŠw“I‚ȑΏۂðŠÖ˜A•t‚¯‚Ä‚¢‚邱‚Æ‚É‚ ‚éB
‚‚܂èAã‹L‚̒藝‚́A”—@“I‚È•û‚́u“ñŽŸŒ³“I‚ÈŒQ˜_“I—‚܂荇‚¢v‚ªA‚»‚ÌŽ©‘R‚ÈŠO
ì—p‚É‚æ‚Á‚ĈʑŠŠô‰œŠw“I‚È•û‚́u“ñŽŸŒ³“I‚ÈŒQ˜_“I—‚܂荇‚¢v‚É’‰ŽÀ‚É•\Œ»‚³‚ê‚Ä‚¢
‚邱‚Æ‚ðŒŸ‚Á‚Ä‚¢‚é‚Ì‚Å‚ ‚éB•Ê‚ÌŒŸ‚¢•û‚ð‚·‚é‚ƁAƒˆ‚Ɂu‰ÂŠ·ŠÂ˜_v‚ÌŽ‹“_i‚‚Ü
‚èA‚à‚Á‚Æ‹ï‘Ì“I‚ÈŒŸ—t‚Å‚¢‚€‚ƁA‰“™“I‚ȉÁŒžæœ‚̔͐°j‚ōlŽ@‚·‚é‚ƁA”‘Ì‚Æ‘o‹È“I
‘㐔‹Èü‚Í‚¢‚ž‚ê‚àŽŸŒ³1‚̑Ώۂł ‚èA‚µ‚©‚à‚»‚̊˜_“I‚ȍ\‘¢i‚‚܂èA³‚Ɂu‰Á
Œžæœv‚̍\‘¢j‚Í‘S‚­ˆÙŽ¿‚Å‚ ‚邪AƒKƒƒAŒQ‚â•›—LŒÀŠî–{ŒQ‚́u“ñŽŸŒ³“I‚ÈŒQ˜_“I—
‚܂荇‚¢v‚ð’Ê‚µ‚Ä—ŒŽÒ‚ðlŽ@‚·‚邱‚Æ‚É‚æ‚Á‚āAi˜3.2‹y‚с˜3.3‚ʼnðà‚µ‚œ‚æ‚€‚ȁj[
‚¢\‘¢“I‚È—ÞŽ—«‚ª•‚‚©‚яオ‚èA‚Ü‚œã‹L‚Ì’èŒ^‚Ì’PŽË«‚É‚æ‚Á‚Ä‚»‚Ì—ŒŽÒ‚ÌŒq‚ª‚è‚ð
‹É‚ß‚Ä–ŸŽŠ“I‚ÈŒ`‚Œ莮‰»‚·‚邱‚Æ‚ª‰Â”\‚É‚È‚éB
(ˆø—pI‚è)

129:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/10 19:06:23.96 ang8zfcy.net
>>772
‚Ç‚€‚à
ƒXƒŒŽå‚Å‚·
ƒŒƒX‚ ‚肪‚Æ‚€
1DRobert‚Æ‚©Awoit‚Æ‚©AŠÔˆá‚Á‚œl‚̃TƒCƒg‚ðŒ©‚Ä‚àAŠÔˆá‚Á‚œî•ñ‚µ‚©‚È‚¢‚ÆŽv‚€‚æ
2D‚»‚ê‚æ‚©AIUT‚ð“Ç‚Þ‚œ‚ß‚Ì—pŒêWŽ‘—¿ƒXƒŒ2
@œÚØÝž(math”Â)
@‚ɏî•ñ‚ðW‚ß‚Ä‚¢‚é‚̂ŁA‚»‚±‚ç‚àŒ©‚Ä‚¿‚å‚€‚Ÿ‚¢
3D‚ ‚ƁA‰º‹L‚ðŒ©‚é•û‚ª—Ç‚¢‚ÆŽv‚€‚æ
@–]ŒŽƒTƒCƒg‚ÌURLØÝž(www.kurims.kyoto-u.ac.jp)
@URLØÝž(www.kurims.kyoto-u.ac.jp)
@–]ŒŽ˜_•¶
@@u‰‰‚̃AƒuƒXƒgƒ‰ƒNƒgEƒŒƒNƒ`ƒƒ[ƒm[ƒg
[1] ŽÀ•¡‘f‘œ—l‘̂̃ZƒNƒVƒ‡ƒ“—\‘z‚Æ‘ª’nü‚ÌŠô‰œ. PDF
[2] piTeichmuller—˜_. PDF
[3] Anabelioid‚ÌŠô‰œŠw. PDF
[4] Anabelioid‚ÌŠô‰œŠw‚ÆTeichmuller—˜_. PDF
[5] —£ŽU•t’lŠÂ‚Ìalmost etale extensionsiŠw¶—p‚̃m[ƒgj. PDF
[6] ”‘̂ƈʑŠ‹È–Ê‚É‹€’Ê‚·‚éu“ñŽŸŒ³‚ÌŒQ˜_“IŠô‰œvi2012”N8ŒŽ‚ÌŒöŠJuÀj. PDF
@URLØÝž(www.kurims.kyoto-u.ac.jp)
@–]ŒŽo’£u‰‰
[8] ‘ȉ~‹Èü‚ÌHodge-Arakelov—˜_‚É‚š‚¯‚鉓ƒA[ƒxƒ‹Šô‰œA”˜_“I”÷•ª‚Ƃ͉œ‚©H@i–ŒŒÃ‰®‘åŠw
@@@2001”N11ŒŽj. PDF
[9] ”˜_“I log scheme ‚ÌŒ—˜_“I•\ŽŠ@i‹ãB‘åŠw 2003”N7ŒŽj. “cŒû‚³‚ñ‚̃m[ƒg
[10] ”˜_“Ilog scheme‚ÌŒ—˜_“I•\ŽŠ‚©‚猩‚œ‘ȉ~‹Èü‚̐”˜_@i–kŠC“¹‘åŠw 2003”N11ŒŽj. PDF
[11] ”˜_“ITeichmuller—˜_“ü–å@i‹ž“s‘åŠw—Šw•””Šw‹³Žº 2008”N5ŒŽj.@@ŒŽ@‰Î@…@–؁@‹à@ŠT—v@
@@@ƒŒƒ|[ƒg–â‘è@’k˜b‰ï@ƒAƒuƒXƒgƒ‰ƒNƒg
[12] ‰F’ˆÛƒ^ƒCƒqƒ~ƒ…[ƒ‰[—˜_‚Ö‚Ì—Ui‚¢‚Ž‚ȁj‚¢@i‹ž“s‘åŠw”—‰ðÍŒ€‹†Š 2012”N12ŒŽj PDF
[13] ‰F’ˆÛƒ^ƒCƒqƒ~ƒ…[ƒ‰[—˜_‚Ö‚Ì—Ui‚¢‚Ž‚ȁj‚¢@sŠg‘å”Łt i“Œ‹ž‘åŠw 2013”N06ŒŽj PDF
[14] ”˜_Šô‰œ‚Ì•—Œi \ ”‚̉ÁŒžæœ‚©‚ç‘Ώ̐«‚ÌŠô‰œ‚܂Ł@i‹ž“s‘åŠw2013”N11ŒŽj PDF

130:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/10 19:07:02.36 ang8zfcy.net
>>129
Œë”š‚·‚Ü‚ñ

131:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 09:36:20.15 ycKpVVK0.net
prime-strip
‘œçt“IƒAƒ‹ƒSƒŠƒYƒ€
URLØÝž(nagasm.org)
‰F’ˆÛ TeichmNuller —˜_“ü–å
¯ —Tˆê˜Y (‹ž“s‘åŠw ”—‰ðÍŒ€‹†Š)
2015 ”N 11 ŒŽ
P19
˜6 ‚Å‚Í v ž V(F) ‚ð—LŒÀ‘f“_‚Æ‚¢‚€‚±‚Æ‚É‚µ‚Ä‚¢‚Ü‚µ‚œ‚ª, ‚±‚Ì‘ÎÛ D?
v
(‚Ü‚œ‚Í F
?~
v
; F
?~ƒÊ
v
; Dv;
Fv) ‚É‚Í g–³ŒÀ‘f“_”Łh ‚à‚ ‚è, ‚»‚ê‚ç‚ðW‚߂邱‚Æ‚Å“Ÿ‚ç‚ê‚é‘ÎÛ {D?
v }vžV(F )
, (‚Ü‚œ‚Í {F?~
v }vžV(F )
;
{F?~ƒÊ
v }vžV(F )
; {Dv}vžV(F )
; {Fv}vžV(F )) ‚Ì“¯Œ^•š‚Í, D? (‚Ü‚œ‚Í F?~; F?~ƒÊ; D; F) ‘f“_ŽÈ (D?-
(respectively, F
?~-; F
?~ƒÊ-; D-; F-) prime-strip ? cf. [10], Definition 4.1, (iii) (respectively, [11],
Definition 4.9, (vii); [11], Definition 4.9, (vii); [10], Definition 4.1, (i); [10], Definition 5.2, (i)) ‚ƌĂ΂ê
‚Ü‚·. (³Šm‚É‚Í, F ‚ð‚»‚Ì“K“–‚ÈŠg‘å‘Ì‚ÉŽæ‚è‘Ö‚Š‚œ‚è, ‚Ü‚œ, ‚æ‚èd—v‚È‚±‚Æ‚Æ‚µ‚Ä, “YŽš‚Ì gvh ‚͈̔͂ð,
‚»‚ÌŠg‘å‘Ì‚Ì‚·‚ׂĂ̑f“_‚Æ‚·‚é‚Ì‚Å‚Í‚È‚­, ‚»‚Ì“K“–‚È•”•ªW‡‚ɐ§ŒÀ‚·‚é, ‚Æ‚¢‚Á‚œC³‚ðs‚€•K—v‚ª‚ 
‚é‚Ì‚Å‚·‚ª@?@‚±‚ê‚ɂ‚¢‚Ä‚Í ˜17 ‚ʼnü‚ß‚Äà–Ÿ‚µ‚Ü‚·.) ­‚È‚­‚Æ‚à—LŒÀ‘f“_‚Å‚Í, gF Œnh ‚Ì‘ÎÛ‚Í (•t
‰Á\‘¢•t‚«) ƒtƒƒxƒjƒIƒCƒh‚Å‚ ‚è, gD Œnh ‚̑Ώۂ͈ʑŠŒQ (‚Æ“™‰¿‚ȃf[ƒ^) ‚Å‚·. ‚Ü‚œ, g?h ‚Æ‚¢‚€‹L†
‚Í, ‰F’ˆÛ TeichmNuller —˜_‚Å‚Í, g’P‰ð“Ih ‚ð•\‚·‹L†‚Æ‚È‚Á‚Ä‚¢‚Ü‚·4
‚‚­

132:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 09:36:41.02 ycKpVVK0.net
>>131
‚‚«
7 ‘œçt“IƒAƒ‹ƒSƒŠƒYƒ€
‰F’ˆÛ TeichmNuller —˜_‚Å‚Í, g‘œçt“IƒAƒ‹ƒSƒŠƒYƒ€h ‚Æ‚¢‚€“Á•Ê‚Ȑ«Ž¿‚ð–ž‚œ‚·ƒAƒ‹ƒSƒŠƒYƒ€‚ªd—v‚È–ð
Š„‚ð‰Ê‚œ‚µ‚Ü‚·. ˜8 ‚ōs‚€‰F’ˆÛ TeichmNuller —˜_‚ÌŽå’藝‚Ì gƒ~ƒjƒ`ƒ…ƒA”Łh ‚Ìà–Ÿ‚Ì‚œ‚ß‚É, ‚±‚Ì ˜7
‚Å‚Í, ‚»‚Ì g‘œçt“IƒAƒŠƒSƒŠƒYƒ€h ‚Æ‚¢‚€ŠT”O‚ɂ‚¢‚Ä‚ÌŠÈ’P‚Èà–Ÿ‚ðs‚¢‚Ü‚·. (Ú‚µ‚­‚Í, —á‚Š‚Î, [11] ‚Ì
Example 1.7 ‚©‚ç Remark 1.9.2 ‚Ü‚Å‚Ì•”•ª‚ðŽQÆ‚­‚Ÿ‚³‚¢.)
‚Ü‚žÅ‰‚É, ŽŸ‚Ì‚æ‚€‚Ȑݒè‚ðlŽ@‚µ‚Ü‚µ‚å‚€. çt“Iƒf[ƒ^ (radial data ? cf. [11], Example 1.7, (i))
‚ƌĂ΂ê‚é‚ ‚鐔Šw“I‘Ώۂª—^‚Š‚ç‚ê‚Ä‚¢‚é‚Æ‚µ‚Ü‚·. ŽŸ‚É, ‚»‚Ìçt“Iƒf[ƒ^‚©‚çƒAƒ‹ƒSƒŠƒYƒ€“I‚ɍ\¬‚Å‚«
‚é (‰º•”“I) ‘Ώۂł ‚é ƒRƒA“Iƒf[ƒ^ (coric data ? cf. [11], Example 1.7, (i)) ‚ª—^‚Š‚ç‚ê‚Ä‚¢‚é‚Æ‚µ
‚Ü‚·. ‚±‚Ì‚æ‚€‚Ȑݒè‚ð çt“IŠÂ‹« (radial environment ? cf. [11], Example 1.7, (ii)) ‚ƌĂт܂·. ‹ï‘Ì
“I‚É‚Í, —á‚Š‚Î, ˆÈ‰º‚Ì‚æ‚€‚Èçt“IŠÂ‹«‚Ì—á‚ðl‚Š‚邱‚Æ‚ª‚Å‚«‚Ü‚·:
(a) gçt“Iƒf[ƒ^h ‚Æ‚µ‚Ä, 1 ŽŸŒ³•¡‘füŒ^‹óŠÔ C (‚Ì“¯Œ^•š) ‚ð, gƒRƒA“I•”•ªh ‚Æ‚µ‚Ä, çt“Iƒf[ƒ^‚Å‚ 
‚é C (‚Ì“¯Œ^•š) ‚©‚ç g‚»‚̐³‘¥\‘¢‚ð–Y‚ê‚éh ‚Æ‚¢‚€ƒAƒ‹ƒSƒŠƒYƒ€‚É‚æ‚Á‚Ä“Ÿ‚ç‚ê‚鉺•” 2 ŽŸŒ³ŽÀüŒ^‹óŠÔ
R
?2
(‚Ì“¯Œ^•š) ‚ðÌ—p‚·‚é.
(ˆø—pI‚è)
ˆÈã

133:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 11:26:10.63 ycKpVVK0.net
URLØÝž(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B72 (2018), 209?307
‘±E‰F’ˆÛ TeichmNuller —˜_“ü–å
¯ —Tˆê˜Y
P227
˜ 6. si
‚µ‚©‚µ‚È‚ª‚ç, ˆÈ‰º‚Ì——R‚É‚æ‚Á‚Ä, ‰äX‚Í, ‚±‚Ì g‚à‚Á‚Æ‚àˆÀ’Œ‚ȃAƒvƒ[ƒ`h ‚ð
Ì—p‚·‚邱‚Æ‚ª‚Å‚«‚Ü‚¹‚ñ. ‚±‚̃Aƒvƒ[ƒ`‚ðÌ—p‚·‚é‚Æ, ’Œ‘O‚̐}‚ªŽŠ‚·‚æ‚€‚É, F
?
l =
{|1|, . . . , |l
?|} ‚ÌŠeŒ³‚ɑ΂µ‚Ä, ‘Ήž‚·‚é J ‚ÌŒ³‚Æ‚µ‚Ä, òJ = l
? ’Ê‚è‚̉”\«‚ðl—¶‚µ‚È
‚¯‚ê‚΂Ȃç‚È‚­‚È‚è‚Ü‚·. ‚»‚ÌŒ‹‰Ê, ‘S‘Ì‚Æ‚µ‚Ä, J ‚Æ F
?
l ‚Æ‚ÌŠÖ˜A‚Æ‚µ‚Ä, òJòJ = (l
?)
l
?
’Ê‚è‚̉”\«‚ðl—¶‚µ‚È‚¯‚ê‚΂Ȃè‚Ü‚¹‚ñ. ˆê•û, ‚±‚̉”\«‚̌”@?@‚‚܂è, •s’è
«@?@‚Í, ‰äX‚Ì–Ú•W‚ÌŠÏ“_‚©‚ç‚Í‘œ‰ß‚¬‚Ü‚·. “Á‚É, ‘ȉ~‹Èü‚̍‚‚³‚Ì•]‰¿‚ÌŠÏ“_‚©
‚çl‚Š‚Ü‚·‚Æ, ‚±‚̉ߑå‚È•s’萫‚ð‹–—e‚µ‚Ä‚µ‚Ü‚€‚Æ, Š–]‚Ì•s“™Ž®‚æ‚è‚à gŽã‚¢•s“™Ž®h
‚µ‚©“Ÿ‚邱‚Æ‚ª‚Å‚«‚È‚­‚È‚Á‚Ä‚µ‚Ü‚€‚Ì‚Å‚·.
ãq‚Ì–â‘è‚ð‰ðŒˆ‚·‚é‚œ‚ß‚É, si (procession ? cf. [7], Definition 4.10) ‚Æ‚¢
‚€ŠT”O‚𓱓ü‚µ‚Ü‚µ‚å‚€.
si‚ðl‚Š‚œê‡‚Ì•û‚ª, ‚œ‚Ÿ‚Ì’ŠÛ“I‚ȏW‡‚ÆŒ©˜ô‚µ‚œê‡‚æ‚è‚à, ƒ‰ƒxƒ‹‚Ì
W‡‚ÉŠÖ‚·‚é•s’萫‚ª¬‚³‚­‚È‚é
‚Æ‚¢‚€d—v‚ÈŽ–ŽÀ‚ðŠÏŽ@‚µ‚Ü‚µ‚œ. si‚Æ‚¢‚€ŠT”O‚ð—p‚¢‚邱‚Æ‚Ì•Ê‚Ì—˜“_‚Æ‚µ‚Ä,
—냉ƒxƒ‹‚ÌŠu—£
‚Æ‚¢‚€“_‚à‹“‚°‚ç‚ê‚Ü‚·. |T| ‚ð‚œ‚Ÿ‚̏W‡‚ÆŒ©˜ô‚·, ‚‚܂è, |T| ‚ð, |T| ‚ÌŽ©ŒÈ‘S’PŽË‘S
‘Ì‚Ì‚È‚·ŒQ‚̍ì—p‚Æ‚¢‚€•s’萫‚Ì‚à‚Ƃňµ‚€ê‡, —냉ƒxƒ‹ 0 ž |T| ‚Æ‚»‚Ì‘Œ‚ÌŒ³ ž T
?
‚ð‹æ•Ê‚·‚邱‚Æ‚Í•s‰Â”\‚Å‚·. ˆê•û, si‚ðl‚Š‚œê‡, (gS
}
1
h ‚Æ‚¢‚€ƒf[ƒ^‚É‚æ‚Á‚Ä)
0 ž |T| ‚Í g“Á•Ê‚ÈŒ³h ‚Æ‚¢‚€‚±‚Æ‚É‚È‚è, ‚»‚Ì‘Œ‚ÌŒ³ ž T
? ‚Æ‚Ì‹æ•Ê‚ª‰Â”\‚Æ‚È‚è‚Ü‚·.
‚»‚µ‚Ä, ŽÀÛ, ‰F’ˆÛ TeichmNuller —˜_‚É‚š‚¢‚Ä,
—냉ƒxƒ‹‚Í’P”“I/ƒRƒA“I‚ȃ‰ƒxƒ‹, ”ñ—냉ƒxƒ‹‚Í’lŒQ“I/çt“I‚ȃ‰ƒxƒ‹
‚Æ‚¢‚€ŠÏŽ@‚Ì‚Æ‚š‚è, —냉ƒxƒ‹‚Æ”ñ—냉ƒxƒ‹‚Í, ‚Ü‚Á‚œ‚­ˆÙ‚È‚é–ðŠ„‚ð‰Ê‚œ‚µ‚Ü‚·. (˜4,
(d), ‚â [2], ˜21, ‚Ì‘O”Œ‚Ì‹c˜_‚ðŽQÆ‚­‚Ÿ‚³‚¢.) ‚±‚ÌŠÏ“_‚©‚ç, g—냉ƒxƒ‹‚ÌŠu—£‰Â”\«h
‚͏d—v‚Å‚·. (Ú‚µ‚­‚Í [8], Remark 4.7.3, (iii), ‚ðŽQÆ‚­‚Ÿ‚³‚¢.)

134:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 12:35:54.18 ycKpVVK0.net
Corollary 3.12, ‚̏ؖŸŠÖ˜A
•s“™Ž®‚Ì“±o
URLØÝž(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B72 (2018), 209?307
‘±E‰F’ˆÛ TeichmNuller —˜_“ü–å
¯ —Tˆê˜Y
P297
˜ 25. ƒŠ
~ƒÊ
LGP ƒŠƒ“ƒN‚Æ—Œ—§“I‚È‘œçt“I•\ŽŠ‚Æ‚»‚Ì‹AŒ‹
P301
‚±‚Ì ˜25 ‚̍Ōã‚É, ãq‚Ì‘œçt“I Kummer —£’E‚ð—p‚¢‚œ q •W‘Ώۂ̎Ÿ”‚ÌŒvŽZ‚É
‚‚¢‚Ä, ŠÈ’P‚Éà–Ÿ‚µ‚Ü‚µ‚å‚€. (Ú‚µ‚­‚Í, [9], Corollary 3.12, ‚̏ؖŸ‚ðŽQÆ‚­‚Ÿ‚³‚¢.)
‚±‚Ì ˜25 ‚Ì–`“ª‚Ì ƒŠ
~ƒÊ
LGP ƒŠƒ“ƒN‚ª’è‚߂铯Œ^ õ 0
C
?
LGP
?š ö 0
C
?
¢ ‚Í,
õ 0ƒŠ •W‘Ώۂð ö 0
q •W
‘ΏۂɈڂµ‚Ü‚·. (˜24, (a), ‚ðŽQÆ‚­‚Ÿ‚³‚¢.) ‚µ‚œ‚ª‚Á‚Ä, ˜14, (e), (i), ‚©‚ç, Š–]‚ÌŽŸ”
deg(ö 0
q •W‘ΏÛ) ‚ð,
õ 0ƒŠ •W‘Ώۂ́@? gõ ‚Ì‘€h ‚̐³‘¥\‘¢‚ÌŠÏ“_‚©‚ç‚Å‚Í‚È‚­@?
gö ‚Ì‘€h ‚̐³‘¥\‘¢‚ÌŠÏ“_‚©‚ç‚̑ΐ”‘̐ςð—p‚¢‚ÄŒvŽZ‚·‚邱‚Æ‚ª‰Â”\‚Å‚·. ˆê•û, ‘œçt
“I Kummer —£’E‚É‚æ‚Á‚Ä, •s’萫 (Ind1), (Ind2), (Ind3) ‚ð”F‚ß‚ê‚Î, ƒŠ~ƒÊ
LGP ƒŠƒ“ƒN‚ª—U
“±‚·‚铯Œ^ õ 0F
?~ƒÊ
¢
?š ö 0F
?~ƒÊ
¢ (˜24, (b), ‚ðŽQÆ) ‚Æ—Œ—§‚·‚铯Œ^ õ 0RFrob
?š ö 0RFrob
‚ª“Ÿ‚ç‚ê‚Ü‚·.
vol(ö 0ƒŠ) ž R Ÿ {‡}
‚ð, •s’萫 (Ind1), (Ind2), (Ind3) ‚̍ì—p‚É‚æ‚é ö 0ƒŠ •W‘Ώۂ̋O“¹‚̘aW‡‚Ì (gö ‚Ì‘€h
‚̐³‘¥\‘¢‚É‚æ‚é) ³‘¥•ï (holomorphic hull ? cf. [9], Remark 3.9.5) ([2], ˜12, ‚Ì
Œã”Œ‚Ì‹c˜_‚ðŽQÆ) ‚̍si³‹K‰»‘ΐ”‘̐ςƂµ‚Ä’è‹`‚µ‚Ü‚µ‚å‚€. ‚·‚é‚Æ, —Œ—§“I“¯Œ^
õ 0RFrob
?š ö 0RFrob ‚Ì‘¶Ý‚©‚ç,
õ 0ƒŠ •W‘Ώۂ̑ΐ”‘̐ςÍ, vol(ö 0ƒŠ) ˆÈ‰º‚Æ‚È‚ç‚Ž‚é‚ð“Ÿ
‚Ü‚¹‚ñ. ‚µ‚œ‚ª‚Á‚Ä, Œ‹˜_‚Æ‚µ‚Ä, •s“™Ž®
vol(ö 0ƒŠ) † deg(ö 0q •W‘ΏÛ)
‚ª“Ÿ‚ç‚ê‚Ü‚·.

135:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 15:26:20.19 ycKpVVK0.net
URLØÝž(www.youtube.com)
‰F’ˆÛƒ^ƒCƒqƒ~ƒ…ƒ‰[—˜_(IUT—˜_)‚ÉŠÖ‚·‚é2‚‚̃Aƒjƒ[ƒVƒ‡ƒ“
1,213 ‰ñŽ‹’®2020/04/11
Šî’êó‘Ԃ̃ZƒVƒEƒ€‚³‚ñ
ƒJƒ‰[(khara,inc.)§ì‚ÌIUTeichŠÖŒW‚ÌCG“®‰æŠy‚µ‚Ý
URLØÝž(www.kurims.kyoto-u.ac.jp)
E“®‰æŒ³URL
Animation 1 - URLØÝž(www.kurims.kyoto-u.ac.jp)
IUTeich‚ÉŠÖ‚·‚éƒAƒjƒ[ƒVƒ‡ƒ“i[IUTchIII], Theorem A‚Ì“à—e‚ɑΉžj
@"The Multiradial Representation of Inter-universal Teichmuller Theory"‚ðŒöŠJB
Î”è”ŁF@u•œŒ³v@ƒtƒF[ƒhƒAƒEƒg”Ł@iavi wmvj@
Animation 2 - URLØÝž(www.kurims.kyoto-u.ac.jp)(animation).mp4
‘æ“ñ‚́AIUTeich‚ÉŠÖ‚·‚éƒAƒjƒ[ƒVƒ‡ƒ“i[IUTchIII], Theorem B‚Ì“à—e‚ɑΉžj
@"Computation of the log-volume of the q-pilot via the multiradial representation"
@‚ðŒöŠJB

136:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 23:36:38.51 ycKpVVK0.net
Legendre form
‘ȉ~‹Èü gy^2 = x(x - 1)(x - ƒÉ)h
URLØÝž(en.wikipedia.org)
Legendre form
In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name elliptic integrals because[1] the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity {\displaystyle \scriptstyle {k}}\scriptstyle {k} (the ellipse being defined parametrically by {\displaystyle \scriptstyle {x={\sqrt {1-k^{2}}}\cos(t)}}\scriptstyle{x = \sqrt{1 - k^{2}} \cos(t)}, {\displaystyle \scriptstyle {y=\sin(t)}}\scriptstyle{y = \sin(t)}).
In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the Carlson symmetric forms. A more detailed treatment of the Legendre forms is given in the main article on elliptic integrals.
The Legendre form of an elliptic curve is given by
y^{2}=x(x-1)(x-ă)
URLØÝž(www.kurims.kyoto-u.ac.jp)
INTER-UNIVERSAL TEICHMULLER THEORY IV: LOG-VOLUME COMPUTATIONS AND SET-THEORETIC FOUNDATIONS
Shinichi Mochizuki April 2020
P41
Corollary 2.2. (Construction of Suitable Initial ƒŠ-Data) Suppose that
X = P1Q is the projective line over Q, and that D º X is the divisor consisting of
the three points g0h, g1h, and g‡h. We shall regard X as the gƒÉ-lineh - i.e.,
we shall regard the standard coordinate on X = P1
Q as the gƒÉh in the Legendre
form gy2 = x(x-1)(x-ƒÉ)h of the Weierstrass equation defining an elliptic curve -
and hence as being equipped with a natural classifying morphism UX š (Mell)Q
[cf. the discussion preceding Proposition 1.8]. Let
‚‚­

137:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/07/18 23:37:17.56 ycKpVVK0.net
>>136
‚‚«
‘±E‰F’ˆÛ Teichmuller —˜_“ü–å PDF (2018) iIndex‚ ‚èj URLØÝž(repository.kulib.kyoto-u.ac.jp)
P94
Q ‚Í—L—”‘Ì Q ‚̑㐔•Â•ï@-@‚Æ‚ÌŠÔ‚É, Ž©‘R‚È‘S’PŽË
‚ª‘¶Ý‚µ‚Ü‚·. ŠeŒ³ ƒÉ ž Q \ {0, 1} ‚ɑ΂µ‚Ä, •û’öŽ® gy^2 = x(x - 1)(x - ƒÉ)h ‚ðl‚Š‚邱
‚Æ‚É‚æ‚Á‚Ä, Q(ƒÉ) ã‚̑ȉ~‹Èü (EƒÉ)Q(ƒÉ) ‚ª“Ÿ‚ç‚ê‚Ü‚·. ‚Ü‚œ, è—]‘Ì Q(ƒÉ) ‚ÌŠg‘å‘Ì FƒÉ
‚ð FƒÉdef= Q(ƒÉ, ã-1,(EƒÉ)Q(ƒÉ)[3 E 5](Q)) ‚Æ’è‹`‚·‚é‚Æ, —Ç‚­’m‚ç‚ê‚Ä‚¢‚é‚Æ‚š‚è, FƒÉ ã‚Ì
‘ȉ~‹Èü EƒÉ def = (EƒÉ)Q(ƒÉ) ~Q(ƒÉ) FƒÉ ‚Í, FƒÉ ‚Ì‚·‚ׂĂ̑f“_‚É‚š‚¢‚肁X•ª—ôæ–@“IŠÒŒ³
‚ðŽ‚¿‚Ü‚·. “Á‚É, ŠeŒ³ ƒÉ ž Q \ {0, 1} ‚É‚š‚¢‚Ä,
E ‘ȉ~‹Èü EƒÉ ‚Ì q ƒpƒ‰ƒ[ƒ^‚ª’è‚ß‚é FƒÉ ã‚̐”˜_“IˆöŽq qƒÉ ‚ÌŽŸ” deg(qƒÉ),
E ”˜_“IˆöŽq qƒÉ ‚ª’è‚ß‚é FƒÉ ã‚Ì g”í–ñh ‚Ȑ”˜_“IˆöŽq fƒÉ ‚ÌŽŸ” deg(fƒÉ),
E ”‘Ì FƒÉ ‚̐â‘΋€–ð·Ï‚ª’è‚ß‚é FƒÉ ã‚̐”˜_“IˆöŽq dƒÉ ‚ÌŽŸ” deg(dƒÉ),
E è—]‘Ì Q(ƒÉ) ‚Ì—L—”‘̏ã‚ÌŠg‘原” dƒÉ def = [Q(ƒÉ) : Q]
‚Æ‚¢‚€ 4 ‚‚̒l‚ðl‚Š‚邱‚Æ‚ª‚Å‚«‚Ü‚·. ‚±‚ê‚ç 4 ‚‚̒l‚Í, ƒÉ ž Q\ {0, 1} ‚ð‚»‚Ì GQ ‹€
–ð‚ÉŽæ‚è‘Ö‚Š‚Ä‚à•Ï‚í‚ç‚È‚¢‚œ‚ß, “Á‚É, ‚±‚ê‚ç 4 ‚‚̒l‚ð gUP ‚̕“_‚Ì‚È‚·W‡‚̏ã‚Ì
ŠÖ”h ‚ƍl‚Š‚邱‚Æ‚ª‚Å‚«‚Ü‚·. ‚±‚̐ݒè‚Ì‚à‚Æ, Belyi ŽÊ‘œ‚ð—p‚¢‚œ‹c˜_‚ð“K—p‚·‚邱‚Æ
‚É‚æ‚Á‚Ä, ‚±‚Ì ˜26 ‚Ì–`“ª‚ŏq‚ׂœ gDiophantus Šô‰œŠw“I•s“™Ž®h ‚ðØ–Ÿ‚·‚é‚œ‚ß‚É‚Í,
ˆÈ‰º‚ÌŽå’£‚ðØ–Ÿ‚·‚ê‚Ώ[•ª‚Å‚ ‚邱‚Æ‚ª‚í‚©‚è‚Ü‚· ([5], Theorem 2.1; [10], Corollary
2.2, (i); [10], Corollary 2.3, ‚̏ؖŸ‚ðŽQÆ):
(ˆø—pI‚è)
ˆÈã

138:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/08/17 16:46:53.77 nT2E/2XT.net
ƒƒ‚
URLØÝž(blog.livedoor.jp)
y”ŠwzABC—\‘zƒjƒ…[ƒXyÅVî•ñz
2018”N01ŒŽ24“ú
‰F’ˆÛƒ^ƒCƒqƒ~ƒ…ƒ‰[—˜_‚Ì‚Ü‚Æ‚ßWiki
(2018.1.24XV)
EF. Tan and K. Chen‚É‚æ‚郏[ƒNƒVƒ‡ƒbƒvŽ‘—¿(2015.7‚É–k‹ž‚ÅŠJÃ‚³‚ê‚œuWorkshop on Inter-Universal Teichmuller Theoryv‚æ‚è) (‰pŒê)
URLØÝž(wiutt.csp.escience.cn)
Note on the theory of Absolute Anabelian Geometry of Mochizuki URLØÝž(wiutt.csp.escience.cn)
EMinhyong Kim‚É‚æ‚é‰ðàƒy[ƒp[(‰pŒê)
URLØÝž(people.maths.ox.ac.uk)
E¯—Tˆê˜YŽ‚É‚æ‚éƒT[ƒxƒC(2015.12ŠJÃ‚ÌŒ€‹†W‰ï“àu‰F’ˆÛ Teichmuller —˜_“ü–åv‚ł̍u‹`Ž‘—¿)(“ú–{Œê)
URLØÝž(www.kurims.kyoto-u.ac.jp)

139:‚P‚R‚Ql–Ú‚Ì‘f”‚³‚ñ
21/08/17 16:51:56.02 nT2E/2XT.net
–{‘̃Šƒ“ƒNØ‚ê‚ŁAƒLƒƒƒbƒVƒ…“\‚é
URLØÝž(webcache.googleusercontent.com)
nLab
anabelioid
Contents
1. Introduction
2. Details
3. Associated notions
4. References
Introduction 0.1
An anabelioid is a category intended to play the role of a egeneralised geometric objectf in algebraic/arithmetic geometry. Its definition is simple: a finite product of Galois categories, or in other words of classifying topoi of profinite groups. The significance comes from the fact that in anabelian geometry, an algebraic variety is essentially determined by its algebraic fundamental group, which arises from a Galois category associated to the algebraic variety. The idea, due to Shinichi Mochizuki, is that one can develop the geometry of these Galois categories themselves, and products of Galois categories in general; thus, develop a form of categorical algebraic geometry.
To quote from Remark 1.1.4.1 of Mochizuki2004:
The introduction of anabelioids allows us to work with both galgebro-geometric anabelioidsh (i.e., anabelioids arising from (anabelian) varieties) and gabstract anabelioidsh (i.e., those which do not necessarily arise from an (anabelian) variety) as geometric objects on an equal footing.
The reason that it is important to deal with ggeometric objectsh as opposed to groups, is that:
We wish to study what happens as one varies the basepoint of one of these geometric objects.
Details 0.2
The following definitions follow Mochizuki2004.
Definition 0.3. A connected anabelioid is exactly a Galois category.
Definition 0.4. An anabelioid is a category equivalent to a finite product of connected anabelioids, that is, to a finite product of Galois categories.
‚‚­


ŽŸƒy[ƒW
ÅVƒŒƒX•\ŽŠ
ƒXƒŒƒbƒh‚ÌŒŸõ
—ÞŽ—ƒXƒŒˆê——
˜b‘è‚̃jƒ…[ƒX
‚š‚Ü‚©‚¹ƒŠƒXƒg
¥ƒIƒvƒVƒ‡ƒ“‚ð•\ŽŠ
‰É‚‚Ԃµ2ch

375“ú‘O‚ɍXV/383 KB
’S“–:undef